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Abstract. Classical digital computing creates the illusion of a continuum by
hiding the complexity of floating point operations, making (approximate) con-
tinuous mathematics available at low cost. Unfortunately, a comparably cheap ab-
straction for continuous operations is not available in near-term digital quantum
computers. For example, a quantum implementation of the truncated Fock basis
approximation to continuous-variable (CV) quantum computing — the preferred
method for use in classical simulations — would result in non-unitary circuits with
extensive long-range connectivity, requiring an exponential number of gates for
even the simplest of Gaussian operations.

After reviewing existing approaches and the theory of Gaussian computa-
tions, we present our first steps in the development of an alternative framework
for the simulation of CV quantum computations on near-term digital devices. In
this framework, arbitrary CV states are expressed as superposition of standard
Gaussian states, which are in turn mapped onto the computational basis. This
results in Gaussian operations which are cheap and easy to implement, with gen-
eral CV gates obtained through the use of non-Gaussian ancillary states.

Introduction

Quantum mechanics, as a physical theory, is continuous in nature. A quantum
system can typically be described by a wave function over its real-valued position
space; its evolution is given by differential equations, describing a smooth system
transformation over time; and measurements of observables such as position or
momentum can be performed, yielding continuous-valued samples drawn from
probability distributions. This is in stark contrast to computations on quantum
machines, which, albeit based on the same underlying physical theory, are typic-
ally designed using discrete physical systems and discrete operations [i].

Many applications from simulation of quantum mechanical systems them-
selves [2] to quantum machine learning [3, 4] (see below) would benefit from a
continuous model of quantum computation. Does the discrete design of quantum
computing represent a real limitation of the computing power or can any continu-
ous quantum system be easily discretised and encoded in a qubit machine?

This work’s primary objective is to explore the computational differences
between the continuous-valued model of quantum mechanics and the discrete
framework of quantum computer science. There is both a theoretical and a prac-
tical interest in such research: the ability to encode arbitrary continuous opera-
tions on qubits could be instrumental in furthering the scope of computational
tasks that can be tackled on qubit machines. On the other hand, such advances
might give new ways to reason about continuous quantum computations and im-
prove our understanding of some aspects of quantum mechanics that remain dif-
ficult to grasp.

This naturally yields a research programme in two stages. The first step will



be an exploration of the theoretical fundament of continuous-variable quantum
computing, which from now on, we will refer to as CV computing. We will present
the current state of CV computing and build on this discussion to explore discrete
representations of continuous computations. This will highlight some of the main
distinguishing CV features in comparison to qubit computations, as well as the
trade-offs that arise in the discretisation of continuous quantum resources. In the
second part, we will then apply the gathered insights to design computational ap-
proximations of CV operations on qubit machines. The focus will lie in developing
approaches that can be implemented in the near future on Noisy Intermediate-
Scale Quantum (NISQ) devices, with the inherent constraints on the number of
qubits and the circuit depth. We will also perform proof-of-concept numerical
simulations of the different approaches to support our analysis.

In the first chapter, we will motivate our research by introducing some of the
challenges of continuous operations on quantum systems and discussing some
possible applications of CV computing. A comparison of CV operations in the
quantum case to the well-known classical equivalent, floating point arithmetic,
will highlight some of the main differences to the classical case that must be ad-
dressed. We will then present the theory of quantum CV computation in chapter
2; we will extend the traditional Gaussian formalism to develop a new theory of
arbitrary CV computation based on superpositions of Gaussians (SoG). This will
lead us to explore different approaches to CV approximations in chapter 3, where
comparing traditional approximations with the SoG approach will make clear the
advantages and disadvantages of each approach.



1 Continuous computations: an overview

1.1 A brief history of classical continuous computations

Before we start our discussion of CV quantum computation, it is in order to briefly
recall the situation in classical computing in order to draw some analogies. In-
deed, most features of classical continuous computations are found again in the
quantum case, and many of the discretisation challenges of quantum CV are all
too familiar with the classical case in mind.

It became clear early on in the development of computers that discrete op-
erations and discrete systems were preferable to continuous systems: not only
are discrete systems significantly less sensitive to noise, their operations can also
easily be described in exact and succinct form. In binary representation, any op-
eration on a discrete system can be expressed as a truth table: see Figure fi for an
example of this. This representation also yields directly a straightforward way of
building electronic circuits from arbitrary operations [F, §]. This is not to say that
intrinsically continuous systems have never been used or cannot be used for com-
putations: FM radio and music discs are good examples of continuous signals,
and specific operations such as Fourier transforms can be implemented efficiently
in analog signal processing [7]. However, as the cost of technology fell and pro-
cessing power increased, the few use case-specific advantages of continuous oper-
ations have for the vast majority been overtaken by the simplicity, scalability and
reliability of digital technology.

Figure 1: In classical computing, any operation can be viewed as a binary truth
table (on the left). From there, the optimal electrical circuit can be com-
puted (on the right).

Instead, we rely on approximations of continuous operations that run on dis-
crete hardware with arbitrary precision, given enough resources. The most fun-
damental example of this paradigm is the floating point number representation,
which has become the standard abstraction for arbitrary continuous-valued real
numbers. Processors support all standard arithmetic operations on floating points
approximations, so that the differences behind discrete integers and the real con-
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tinuum become invisible [8]. Behind the scenes, any non-integer value is stored
as two values, similar to the familiar scientific notation:

0000 O 0000 tonto;

The first value stores the most significant bits of the non-integer value (called the
mantissa — in our case 5673), whilst the second value stores the exponent (in
our case -3). This allows to represent arbitrary numbers up to a certain precision,
at the cost of more complex operations: additions of floating point numbers, for
example, now require first that the exponents be compared and in the case that
they do not match, that one of the summands be zero-padded until the exponents
match.

This approximation of continuous values has been widely successful and is
nowadays found in every processor. Nevertheless, this does not mean that all
quirks of classical continuous computation have been resolved: beyond mere ap-
proximation errors, it still remains to the programmer to take care of some of the
unexpected behaviours of floating point numbers. For example, for possibly neg-
ative numbers, the sign of the number must be stored separately from the man-
tissa and exponent; a consequence of that is that 00 and 00 are recognised as two
different values to a processor. This goes to show that discretisation of continu-
ous operations is often not as straightforward as might be assumed, and that even
as an approximation might be successful, it might not be that every operation is
simple to perform.

We will see in the quantum case that many of these considerations remain
valid. As opposed to the classical case, however, it is yet unclear how to best dis-
cretise quantum CV operations on NISQ devices. Indeed, beyond encoding con-
tinuous values in discrete systems, discretisations of quantum CV computations
must be able encode arbitrary continuous superposition of states. We discuss this
in the next section.

1.2 The challenges of quantum CV state representation

In the previous section, we introduced some ideas for discretisation of continuous
operations by examining the current consensus in the more familiar case of clas-
sical computing. We will introduce the quantum CV framework more formally in
the next chapter, but before we do so, we wish here to highlight briefly some of
the main challenges that distinguishes quantum CV from the classical case.

First and foremost, the quantum Hilbert structure of state space gives us the
freedom to choose an appropriate basis for the discretisation: as opposed to the
classical case, where we know that we need to transform a real number 0 O [
into a sequence of bits U [0y, we can choose to express a given state [0 as a



1.2 The challenges of quantum CV state representation

superposition (00 I:IDDDD 0; 10,00 and then encode each of [0 as ]D%:D 0 og"o:

O O
1000 O 0,000 0 O 0,102 o og’oe
oo oo

This is a liberty that of course we should exploit to find an optimal discretised
representation.

On the downside, however, given any basis of the Hilbert space, the infinite
dimensional construction also means that there will always be CV states that can-
not be expressed as the superposition of a finite number of terms. For example,
suppose we express states as superpositions of eigenstate of position [0, 0 O [.
Then arbitrary two-mode states are of the form

|
aco DDD d0d0 000000000 O oo

where 000000 denotes the normalised wave function of [0C:
Q00000 O 00000 0 oorooo O iooo 1

It should be clear why such states cannot be expressed in general as finite super-
positions of [0 states. A particularly interesting example of this is given by the
idealised wave function 000100 O 000" O 000000, where [ is some real function
I 00 O O with norm one. The choice of the term 0" is irrelevant, as long as it is
non-linear in [0. The state {00 simplifies to

O
inlign DDD d0 0000100 O 1000

We can see that there is a perfect correlation between the first and second mode -
but this correlation is non-linear. Such continuous superpositions and the result-
ing non-linear entanglement have no discrete equivalent (or classical equivalent,
for that matter). Assuch, it is impossible to encode this exactly in some discretised
00 basis.

Finally, given the current limitations of quantum hardware [g], an important
criterion in the search for a discrete approximation of continuous operations is the
locality of the resulting simulated operations. That is, we wish that “simple” con-
tinuous operationsf result in approximated operations that involve as few qubits
as possible, as an indication of feasibility in real-world application in the near
future. Note that the classical implementation of addition is highly non-local:
the simple operation U0 will flip every bit of eg. GSSSS At this point in the de-
velopment of quantum computer science, this behaviour is highly undesirable
and would make any approximation approach impractical to implement and im-
possible to scale.

*We will elaborate on this in the next chapter.
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1.3 Continuity in Quantum Machine Learning

In practice, the CV model of quantum computation has many benefits in diverse
applications [2-4]. In the absence of CV devices and for the same reliability and
scalability reasons we discussed in section [t.1, obtaining an efficient CV approx-
imation scheme on qubit devices would be a significant milestone. We will com-
plete this first introductory chapter by presenting a concrete application and the
advantages of the CV model.

In recent years, efforts towards Quantum Machine Learning (QML) have
grown to significant prominence. The main realisation driving developments in
the field is that quantum mechanics and the theory behind machine learning (ML)
have some aspects in common. In fact, both theories rely heavily on linear algebra,
so that by translating a linear algebra computation from machine learning into a
physical quantum mechanical process, we can hope to perform machine learn-
ing optimisations faster than we could on classical computers. Furthermore, the
operator formalism of quantum mechanics also makes it easy to compute derivat-
ives in certain circumstances, so that we can hope to leverage that too to evaluate
optimisation gradients [10].

Several approaches have been followed to encode ML feature vectors into
qubits. The most straightforward attempt is to interpret a feature vector directly as
an element of the Hilbert space of quantum states [11-13]. The feature vector thus
defines a quantum state and the vector components are stored as amplitudes in the
quantum state. Amplitude-encoding makes linear operations on feature vectors
very easy to be performed. However, machine learning also crucially depends on
non-linear operations in order to represent non-linear models. Introducing non-
linearity in amplitude-encoded feature vectors is physically impossible without
state measurements and repeated state preparations, rendering it likely that the
additional computational overhead will more than compensate the speed-up from
quantum computations.

Alternative qubit encodings exist [, 14, 15], but in the absence of amplitude-
encoding, they all suffer from a common problem: they are encoding continuous
information in a discretised system. On the other hand, the Gaussian represent-
ation of CV states, which we will present in the second chapter, offers an elegant
framework to store feature vectors as mean position and momentum of CV sys-
tems [, 16]. It turns out that using unitary transformations of the CV states, we
can perform both linear and non-linear operations on the feature vectors.



2 The CV model of quantum computation

2.1 The quantum harmonic oscillator (QHO) model

The quantum CV computational model is typically based on the quantum har-
monic oscillator (QHO) framework. This corresponds to the simplest (non-trivial)
one-dimensional CV system, in which the dynamics are given by a quadratic po-
tential, i.e. by a first-order approximation of the force acting on the system.

QHO admits a very elegant algebraic theory that gives a complete charac-
terisation of its energy levels and its respective eigenstates. In the following, we
will briefly recall the main properties of QHO but we will not go into detail and
assume that the reader already has some level of familiarity with the formalism.
For a detailed overview, we refer to a reference such as [17].

The Hamiltonian, the eigenstates and the position and momentum observ-
ables of the QHO can all be obtained from the definition of an annihilation oper-
ator 0[and its conjugate 0f]Jthe creation operator:

0 I 0
0M —00¥0 0m 0 — 0¥ 0m o o L o e
Hly a0 0

oo o 000 0mooo 0Mmo O 00m oo 0mo O O

where 0010 O OIOJ00O denotes the energy eigenstates of [1 with energy levels
Oy O 0DO00 O 00 An important property of QHO is the commutation relation
[0I0%0 O 0, which can equivalently be expressed as J0INMO .

Such a QHO system is typically called a mode, or qumode. CV computations
become meaningful once several such qumodes are considered together and are
entangled. In this case, it is common to define for 0 qumodes

g 0@ O 08 0§
The 000 commutation relations can then be rewritten succinctly as
DOEh O6 O 00 )
where U is the symplectic matrix

0 0 0
OO 100 DDDDD DD[
oo

A quantum electromagnetic field corresponds pretty closely to such a system.
The number of qumodes in the electromagnetic field is determined by the specific
boundary conditions of the system considered, similar to how the geometry of a
water glass or a bell determines the resonance frequencies. We typically imagine
a CV quantum computer to have a finite and fixed number of modes [, and think
of them as the CV equivalent of qubits on a digital machine.



2 The CV model of quantum computation

2.2 Complete CV state descriptions

The QHO energy eigenstates Il introduced in the previous section form a or-
thonormal basis of the Hilbert state space. This countably infinite-dimensional
Hilbert space is also known as Fock space, and the energy eigenstates [0l as Fock
states. Hence, a complete description of a CV state with  modes is given by vec-
tors from the tensor product of U Fock spaces Oyl 01 0g:

0
000 L0
100

In Fock basis

Using orthonormality, we immediately obtain the description of any pure state [[J[

in the Fock basis .

000 OO 0000000 [1]
0oo
In the rest of this work when the basis is not specified, the state vector of a state [0
refers to the vector given by the coefficients U0I0L, i.e. its state vector in the Fock
basis.

Using the standard generalisation of quantum mixed states [ as density matrices,
as is wildly used in qubit quantum information, we obtain that a CV state is fully
described by an infinite square matrix [

0
0

gd L] Ooo oo om0 (0p O O W05 U O]
0030000,003 0
g Bomoooooms Dogpmooomos U Doooooomos.— Doomooomoomoooe U
0 Ooooooonoooo Opmoooomon U Uomoooooom Uomiooooooomooomn. 2000
U 0 0 0 0 0 U

0ol i
% Oomioooonon Opmoooomon U Opogooomomn Uooooooiooooonnonn DE
O0pmoooommooomon Ooooonoomoomomoon. O Oomooooomiooooone. Cooooooiomooonoos U0
0 0 0 0 0 0g

Note that this matrix must be symmetric positive definite and have trace smaller
than unity: 0 O TrO O 0.

As a wave function

Sometimes, working with infinite dimensional matrices is not the most convenient
approach. Another representation that is usual in quantum mechanics is the wave
function formalism. This is equivalent to replacing the Fock basis of equation f| by
the uncountable set of orthogonal position eigenstates [[:

100 0O 000 [2]
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Plugging equations ] and P together, we get an expression of the wave function in
terms of the state vector in Fock basis:

O
0000 O 00 O [ 0oioo oo

ooo
|

0 O 0000 O 000058700
oaoo

where we used the well-known expression of the Fock state wavefunction in terms
of the U-th Hermite polynomials [500L:

00I00 O Oy 5000028700 [3]

where [ is some normalisation factor.

Wavefunctions are a helpful representation insofar as they are arguably easier
to reason about than infinite matrices and have a clear physical interpretation.
Computationally, however, they remain as hard to manipulate as the infinite mat-
rix representation, as in general in the absence of an elegant approximation, they
ultimately rely on a similar representation with infinitely many coefficient.

However, an important pattern emerged in equations il and p: by choosing a
set of vectors from Hilbert space, we can obtain new descriptions of a given state,
with possibly different properties: the Fock basis can be used to express arbit-
rary states as a discrete superposition of countably many basis elements, whereas
the wave function description is uncountable and continuous. However, wave
function representations have advantages too, as they are better suited to model
position measurements and compute outcomes.

As Wigner function

Finally, a third state description close to the wave function representation for a
J-mode mixed state [ is given by its Wigner function ;000 [48]. In contrast to
the wave function that is only a function of one observable (e.g. position or mo-
mentum), the Wigner function is defined over the entire phase space given by

position and momentum simultaneously: 0 0 0050050 O 10500507,

It is given in terms of the position eigenvectors [l by

0
0000 O Ooooo g ﬁDDDdDD 00 O 01000 O Ogoiiady

Given the Heisenberg uncertainty principle, this function cannot be a probability
distribution of position and momentum simultaneously. However, the Wigner
function is a so-called quasi-probability distribution: it is real-valued and normal-
ised, and has the further property that its marginal distribution are probability
distributions:

00,100,000 dy O diydly O dlgy 007000



2 The CV model of quantum computation

The Wigner function offers an alternative to the wave function formalism that is
symmetric in the quadrature operators Jland Oldnd, crucially, that generalises well
to non-pure multi-mode states. We will see in the coming sections that Wigner
functions form the basis for the description of arbitrary Gaussian states.

2.3 Gaussian states

The complete CV state descriptions of the previous section will be impractical
for discrete approximations, as they are infinite and/or continuous. The most
naive solution would be to attempt to discretise the function domain or select a
finite subset of the basis sets as an approximation. Several drawbacks, which we
will discuss in more detail section .1, render this approach difficult in practice.
Instead, we will now present a well-behaved strict subset of CV states that form a
promising avenue of work for CV state approximation schemes: these states can
be completely defined in finite dimension, making them ideally suited for digital
simulations.

These states are known as Gaussian states: in the pure case they correspond
to states with Gaussian wave functions. A pure single-mode Gaussian state [ is
expressed by the wave function

u

i o _F 0,002 00000407
0000 O OO 7607 [ [4]

parametrised by two real parameters Uyl 0; [ [ and the complex parameter [ []
OY 0 000 0O Re0 O 00 [ig]. This can be generalised to arbitrary multi-mode
mixed states [ using their Wigner function. A [-mode mixed state 0 is Gaussian
if it can be expressed as

0 0 O 0Od
Opi00 0 — ————=exp0 000 0 00”0700 O 0000
0" OdetdO0

parametrised by the displacement vector 0 [0 0" and the symmetric positive
covariance matrix 0 0 O, Given that 0 is symmetric, any D-mode Gaussian
state can thus be parametrised by 00" 000 real values. This is in stark contrast with
any representation based on finite approximation of state vectors, where the num-
ber of basis elements grows exponentially in the number of modes [: if a single
mode is represented using [ basis elements, then describing 0 modes require [
parameters.

As their names suggest, the displacement and covariance parameters of Gaus-
sian states also have a straightforward physical interpretation. They correspond
to the first and second (symmetric) statistical moments of the U@nd OCbbserv-

10



2.3 Gaussian states

ables [18, 20]:

g
00 00RO Op0f O T U080 U080 (first order moments)

i [5]
Oy O EDDDD@Q’] 0BE00,0080,008  (second order moments)

Using equation [, we can even imagine to obtain Gaussian approximations of any
CV state U by truncating the Wigner function to first and second moments. In
many cases, this is of course a very crude approximation, especially as higher
energy components of the wave function begin to induce high frequency terms.
We will expand on this idea in more detail in section .5 and examine strategies
to approximate arbitrary states.

The Gaussian formalism is widely used in practice, both by theorists and ex-
perimentalists. Its popularity stems from the simplicity and ubiquity of Gaus-
sian states: most well-known states, as well as the vast majority of experimentally
feasible states happen to be Gaussian already. Perhaps even more significantly,
most experimentally feasible transformations preserve Gaussians, making Gaus-
sian computations central to CV computation theory. These Gaussian-preserving
operations will be the subject of the next section.

Gaussian transformations

Operations that preserve Gaussian states are called Gaussian transformations and
correspond to affine transformations of phase space [21]

00 oo o
For the covariance matrix [J, this corresponds to the transformation
0 O 0009 [6]

The preservation of the standard commutation relations 000 O 10 requires

that 0 be symplectic, i.e. 000" O 0. Quantum operations on Gaussian CV states
form the symplectic group SpUUII (10 and are fully described by linear operations
on the phase space.

The most common Gaussian operations are displacements, rotations and squeez-

ings. These operations take their names from their effect in phase space: they can
be elegantly visualised in phase space by plotting their effect on the Wigner func-
tion of CV states, see figure p. Displacements provoke a global translation in phase
space, leaving the shape of the Wigner function (i.e. the covariance) unchanged.
Squeezing operations scale the two axes of the Gaussian by some factor I and 0"
respectively, yielding ellipse-shaped Gaussians. Finally, rotations act as expected,
by rotating phase space.

11
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