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Abstract. Classical digital computing creates the illusion of a continuum by
hiding the complexity of floating point operations, making (approximate) con-
tinuousmathematics available at low cost. Unfortunately, a comparably cheap ab-
straction for continuous operations is not available in near-term digital quantum
computers. For example, a quantum implementation of the truncated Fock basis
approximation to continuous-variable (CV) quantum computing – the preferred
method for use in classical simulations – would result in non-unitary circuits with
extensive long-range connectivity, requiring an exponential number of gates for
even the simplest of Gaussian operations.

After reviewing existing approaches and the theory of Gaussian computa-
tions, we present our first steps in the development of an alternative framework
for the simulation of CV quantum computations on near-term digital devices. In
this framework, arbitrary CV states are expressed as superposition of standard
Gaussian states, which are in turn mapped onto the computational basis. This
results in Gaussian operations which are cheap and easy to implement, with gen-
eral CV gates obtained through the use of non-Gaussian ancillary states.

Introduction
Quantum mechanics, as a physical theory, is continuous in nature. A quantum
system can typically be described by a wave function over its real-valued position
space; its evolution is given by differential equations, describing a smooth system
transformation over time; and measurements of observables such as position or
momentum can be performed, yielding continuous-valued samples drawn from
probability distributions. This is in stark contrast to computations on quantum
machines, which, albeit based on the same underlying physical theory, are typic-
ally designed using discrete physical systems and discrete operations [1].

Many applications from simulation of quantum mechanical systems them-
selves [2] to quantum machine learning [3, 4] (see below) would benefit from a
continuousmodel of quantum computation. Does the discrete design of quantum
computing represent a real limitation of the computing power or can any continu-
ous quantum system be easily discretised and encoded in a qubit machine?

This work’s primary objective is to explore the computational differences
between the continuous-valued model of quantum mechanics and the discrete
framework of quantum computer science. There is both a theoretical and a prac-
tical interest in such research: the ability to encode arbitrary continuous opera-
tions on qubits could be instrumental in furthering the scope of computational
tasks that can be tackled on qubit machines. On the other hand, such advances
might give newways to reason about continuous quantum computations and im-
prove our understanding of some aspects of quantum mechanics that remain dif-
ficult to grasp.

This naturally yields a research programme in two stages. The first step will



be an exploration of the theoretical fundament of continuous-variable quantum
computing, which fromnowon,wewill refer to asCV computing. Wewill present
the current state of CV computing and build on this discussion to explore discrete
representations of continuous computations. This will highlight some of themain
distinguishing CV features in comparison to qubit computations, as well as the
trade-offs that arise in the discretisation of continuous quantum resources. In the
second part, wewill then apply the gathered insights to design computational ap-
proximations of CVoperations on qubitmachines. The focuswill lie in developing
approaches that can be implemented in the near future on Noisy Intermediate-
Scale Quantum (NISQ) devices, with the inherent constraints on the number of
qubits and the circuit depth. We will also perform proof-of-concept numerical
simulations of the different approaches to support our analysis.

In the first chapter, we will motivate our research by introducing some of the
challenges of continuous operations on quantum systems and discussing some
possible applications of CV computing. A comparison of CV operations in the
quantum case to the well-known classical equivalent, floating point arithmetic,
will highlight some of the main differences to the classical case that must be ad-
dressed. We will then present the theory of quantum CV computation in chapter
2; we will extend the traditional Gaussian formalism to develop a new theory of
arbitrary CV computation based on superpositions of Gaussians (SoG). This will
lead us to explore different approaches to CV approximations in chapter 3, where
comparing traditional approximations with the SoG approach will make clear the
advantages and disadvantages of each approach.
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1 Continuous computations: an overview

1.1 A brief history of classical continuous computations

Beforewe start our discussion of CV quantum computation, it is in order to briefly
recall the situation in classical computing in order to draw some analogies. In-
deed, most features of classical continuous computations are found again in the
quantum case, and many of the discretisation challenges of quantum CV are all
too familiar with the classical case in mind.

It became clear early on in the development of computers that discrete op-
erations and discrete systems were preferable to continuous systems: not only
are discrete systems significantly less sensitive to noise, their operations can also
easily be described in exact and succinct form. In binary representation, any op-
eration on a discrete system can be expressed as a truth table: see Figure 1 for an
example of this. This representation also yields directly a straightforward way of
building electronic circuits from arbitrary operations [5, 6]. This is not to say that
intrinsically continuous systems have never been used or cannot be used for com-
putations: FM radio and music discs are good examples of continuous signals,
and specific operations such as Fourier transforms can be implemented efficiently
in analog signal processing [7]. However, as the cost of technology fell and pro-
cessing power increased, the few use case-specific advantages of continuous oper-
ations have for the vast majority been overtaken by the simplicity, scalability and
reliability of digital technology.

Figure 1: In classical computing, any operation can be viewed as a binary truth
table (on the left). From there, the optimal electrical circuit can be com-
puted (on the right).

Instead, we rely on approximations of continuous operations that run on dis-
crete hardware with arbitrary precision, given enough resources. The most fun-
damental example of this paradigm is the floating point number representation,
which has become the standard abstraction for arbitrary continuous-valued real
numbers. Processors support all standard arithmetic operations on floating points
approximations, so that the differences behind discrete integers and the real con-
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1 Continuous computations: an overview

tinuum become invisible [8]. Behind the scenes, any non-integer value is stored
as two values, similar to the familiar scientific notation:

5.673 = 5673 ⋅ 10−3.

The first value stores the most significant bits of the non-integer value (called the
mantissa — in our case 5673), whilst the second value stores the exponent (in
our case -3). This allows to represent arbitrary numbers up to a certain precision,
at the cost of more complex operations: additions of floating point numbers, for
example, now require first that the exponents be compared and in the case that
they do not match, that one of the summands be zero-padded until the exponents
match.

This approximation of continuous values has been widely successful and is
nowadays found in every processor. Nevertheless, this does not mean that all
quirks of classical continuous computation have been resolved: beyond mere ap-
proximation errors, it still remains to the programmer to take care of some of the
unexpected behaviours of floating point numbers. For example, for possibly neg-
ative numbers, the sign of the number must be stored separately from the man-
tissa and exponent; a consequence of that is that +0 and −0 are recognised as two
different values to a processor. This goes to show that discretisation of continu-
ous operations is often not as straightforward as might be assumed, and that even
as an approximation might be successful, it might not be that every operation is
simple to perform.

We will see in the quantum case that many of these considerations remain
valid. As opposed to the classical case, however, it is yet unclear how to best dis-
cretise quantum CV operations on NISQ devices. Indeed, beyond encoding con-
tinuous values in discrete systems, discretisations of quantum CV computations
must be able encode arbitrary continuous superposition of states. We discuss this
in the next section.

1.2 The challenges of quantum CV state representation

In the previous section, we introduced some ideas for discretisation of continuous
operations by examining the current consensus in the more familiar case of clas-
sical computing. We will introduce the quantum CV framework more formally in
the next chapter, but before we do so, we wish here to highlight briefly some of
the main challenges that distinguishes quantum CV from the classical case.

First and foremost, the quantum Hilbert structure of state space gives us the
freedom to choose an appropriate basis for the discretisation: as opposed to the
classical case, where we know that we need to transform a real number 𝑣 ∈ ℝ
into a sequence of bits 𝑥1 … 𝑥𝑛, we can choose to express a given state ∣𝜓⟩ as a
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1.2 The challenges of quantum CV state representation

superposition ∣𝜓⟩ = ∑𝑚
𝑖=0 𝛼𝑖 ∣𝜙𝑖⟩ , and then encode each of ∣𝜙𝑖⟩ as ∣𝑥(𝑖)

1 … 𝑥(𝑖)
𝑛 ⟩:

∣𝜓⟩ =
𝑚

∑
𝑖=0

𝛼𝑖 ∣𝜙𝑖⟩ =
𝑚

∑
𝑖=0

𝛼𝑖 ∣𝑥(𝑖)
1 … 𝑥(𝑖)

𝑛 ⟩ .

This is a liberty that of course we should exploit to find an optimal discretised
representation.

On the downside, however, given any basis of the Hilbert space, the infinite
dimensional construction also means that there will always be CV states that can-
not be expressed as the superposition of a finite number of terms. For example,
suppose we express states as superpositions of eigenstate of position |𝑥⟩, 𝑥 ∈ ℝ.
Then arbitrary two-mode states are of the form

∣𝜓⟩ = ∫
∞

−∞
d𝑥d𝑦 𝜓(𝑥, 𝑦) |𝑥⟩ ⊗ |𝑦⟩,

where 𝜓(𝑥, 𝑦) denotes the normalised wave function of ∣𝜓⟩:

𝜓(𝑥, 𝑦) = ⟨𝜓∣𝑥𝑦⟩ = ⟨𝜓∣ (|𝑥⟩ ⊗ ∣𝑦⟩) .

It should be clear why such states cannot be expressed in general as finite super-
positions of |𝑥⟩ states. A particularly interesting example of this is given by the
idealised wave function 𝜓(𝑥, 𝑦) = 𝛿(𝑥3 − 𝑦)𝑓 (𝑥), where 𝑓 is some real function
𝑓 ∶ ℝ −→ ℝ with norm one. The choice of the term 𝑥3 is irrelevant, as long as it is
non-linear in 𝑥. The state ∣𝜓⟩ simplifies to

∣𝜓⟩ = ∫
∞

−∞
d𝑥 𝑓 (𝑥) |𝑥⟩ ⊗ |𝑥3⟩.

We can see that there is a perfect correlation between the first and second mode –
but this correlation is non-linear. Such continuous superpositions and the result-
ing non-linear entanglement have no discrete equivalent (or classical equivalent,
for thatmatter). As such, it is impossible to encode this exactly in some discretised
|𝑥⟩ basis.

Finally, given the current limitations of quantum hardware [9], an important
criterion in the search for a discrete approximation of continuous operations is the
locality of the resulting simulated operations. That is, we wish that “simple” con-
tinuous operations1 result in approximated operations that involve as few qubits
as possible, as an indication of feasibility in real-world application in the near
future. Note that the classical implementation of addition is highly non-local:
the simple operation +1 will flip every bit of eg. 01111. At this point in the de-
velopment of quantum computer science, this behaviour is highly undesirable
and would make any approximation approach impractical to implement and im-
possible to scale.

1We will elaborate on this in the next chapter.
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1 Continuous computations: an overview

1.3 Continuity in Quantum Machine Learning
In practice, the CV model of quantum computation has many benefits in diverse
applications [2–4]. In the absence of CV devices and for the same reliability and
scalability reasons we discussed in section 1.1, obtaining an efficient CV approx-
imation scheme on qubit devices would be a significant milestone. We will com-
plete this first introductory chapter by presenting a concrete application and the
advantages of the CV model.

In recent years, efforts towards Quantum Machine Learning (QML) have
grown to significant prominence. The main realisation driving developments in
the field is that quantummechanics and the theory behindmachine learning (ML)
have some aspects in common. In fact, both theories rely heavily on linear algebra,
so that by translating a linear algebra computation from machine learning into a
physical quantum mechanical process, we can hope to perform machine learn-
ing optimisations faster than we could on classical computers. Furthermore, the
operator formalism of quantummechanics also makes it easy to compute derivat-
ives in certain circumstances, so that we can hope to leverage that too to evaluate
optimisation gradients [10].

Several approaches have been followed to encode ML feature vectors into
qubits. Themost straightforward attempt is to interpret a feature vector directly as
an element of the Hilbert space of quantum states [11–13]. The feature vector thus
defines a quantum state and the vector components are stored as amplitudes in the
quantum state. Amplitude-encoding makes linear operations on feature vectors
very easy to be performed. However, machine learning also crucially depends on
non-linear operations in order to represent non-linear models. Introducing non-
linearity in amplitude-encoded feature vectors is physically impossible without
state measurements and repeated state preparations, rendering it likely that the
additional computational overheadwillmore than compensate the speed-up from
quantum computations.

Alternative qubit encodings exist [4, 14, 15], but in the absence of amplitude-
encoding, they all suffer from a common problem: they are encoding continuous
information in a discretised system. On the other hand, the Gaussian represent-
ation of CV states, which we will present in the second chapter, offers an elegant
framework to store feature vectors as mean position and momentum of CV sys-
tems [3, 16]. It turns out that using unitary transformations of the CV states, we
can perform both linear and non-linear operations on the feature vectors.
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2 The CV model of quantum computation

2.1 The quantum harmonic oscillator (QHO) model
The quantum CV computational model is typically based on the quantum har-
monic oscillator (QHO) framework. This corresponds to the simplest (non-trivial)
one-dimensional CV system, in which the dynamics are given by a quadratic po-
tential, i.e. by a first-order approximation of the force acting on the system.

QHO admits a very elegant algebraic theory that gives a complete charac-
terisation of its energy levels and its respective eigenstates. In the following, we
will briefly recall the main properties of QHO but we will not go into detail and
assume that the reader already has some level of familiarity with the formalism.
For a detailed overview, we refer to a reference such as [17].

The Hamiltonian, the eigenstates and the position and momentum observ-
ables of the QHO can all be obtained from the definition of an annihilation oper-
ator ̂𝑎, and its conjugate ̂𝑎†, the creation operator:

̂𝑥 = 1
√2

( ̂𝑎† + ̂𝑎) ̂𝑝 = 𝑖
√2

( ̂𝑎† − ̂𝑎) 𝐻 = ℏ𝜔( ̂𝑎† ̂𝑎 + 1
2)

̂𝑎† |𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ ̂𝑎 |𝑛⟩ = √𝑛 |𝑛 − 1⟩ ̂𝑎 |0⟩ = 0,

where |𝑛⟩ , 𝑛 = 0, 1, 2 … denotes the energy eigenstates of 𝐻 with energy levels
𝐻𝑛 = ℏ𝜔(𝑛 + 1). An important property of QHO is the commutation relation
[ ̂𝑎, ̂𝑎†] = 1, which can equivalently be expressed as [ ̂𝑥, ̂𝑝] = 𝑖.

Such a QHO system is typically called a mode, or qumode. CV computations
become meaningful once several such qumodes are considered together and are
entangled. In this case, it is common to define for 𝑛 qumodes

𝐑̂ = [ ̂𝑞1 ̂𝑝1 … ̂𝑞𝑛 ̂𝑝𝑛]⊤ .

The 𝑞, 𝑝 commutation relations can then be rewritten succinctly as

[𝑅̂𝑘, 𝑅̂𝑙] = 𝑖Ω𝑘𝑙,

where Ω𝑘𝑙 is the symplectic matrix

𝛀 =
𝑛

⨂
𝑘=1

𝝎, 𝝎 = [ 0 1
−1 0] .

Aquantum electromagnetic field corresponds pretty closely to such a system.
The number of qumodes in the electromagnetic field is determined by the specific
boundary conditions of the system considered, similar to how the geometry of a
water glass or a bell determines the resonance frequencies. We typically imagine
a CV quantum computer to have a finite and fixed number of modes 𝑘, and think
of them as the CV equivalent of qubits on a digital machine.
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2 The CV model of quantum computation

2.2 Complete CV state descriptions
The QHO energy eigenstates |𝑛⟩ introduced in the previous section form a or-
thonormal basis of the Hilbert state space. This countably infinite-dimensional
Hilbert space is also known as Fock space, and the energy eigenstates |𝑛⟩ as Fock
states. Hence, a complete description of a CV state with 𝑘 modes is given by vec-
tors from the tensor product of 𝑘 Fock spaces ℱ1, … , ℱ𝑘:

∣𝜓⟩ ∈
𝑘

⨂
𝑖=1

ℱ𝑖.

In Fock basis

Using orthonormality, we immediately obtain the description of any pure state ∣𝜓⟩
in the Fock basis

∣𝜓⟩ =
∞
∑
𝑛=0

⟨𝑛∣𝜓⟩ |𝑛⟩ . [1]

In the rest of this workwhen the basis is not specified, the state vector of a state ∣𝜓⟩
refers to the vector given by the coefficients ⟨𝑛∣𝜓⟩, i.e. its state vector in the Fock
basis.

Using the standard generalisation of quantummixed states 𝜌 as densitymatrices,
as is wildly used in qubit quantum information, we obtain that a CV state is fully
described by an infinite square matrix 𝐴

𝜌 =
∞
∑

𝑛1,𝑛′
1,…,𝑛𝑘,𝑛′

𝑘=0
𝑎(𝑛1,𝑛′

1),…,(𝑛𝑘,𝑛′
𝑘) ∣𝑛1 … 𝑛𝑘⟩⟨𝑛′

1 … 𝑛′
𝑘∣

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎(1,1)…(1,1) 𝑎(1,1)…(1,2) … 𝑎(1,1)…(1,𝑘) 𝑎(1,1)…(1,2),(1,1) …
𝑎(1,1)…(2,1) 𝑎(1,1)…(2,2) … 𝑎(1,1)…(2,𝑘) 𝑎(1,1)…(1,2),(2,1) …

⋮ ⋮ ⋱ ⋮ ⋮
𝑎(1,1)…(𝑘,1) 𝑎(1,1)…(𝑘,2) … 𝑎(1,1)…(𝑘,𝑘) 𝑎(1,1)…(1,2)(𝑘,1) …

𝑎(1,1)…(2,1)(1,1) 𝑎(1,1)…(2,1)(1,2) … 𝑎(1,1)…(2,1)(1,𝑘) 𝑎(1,1)…(2,2)(1,1) …
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that this matrix must be symmetric positive definite and have trace smaller
than unity: 0 ⩽ Tr𝐴 ⩽ 1.

As a wave function

Sometimes, workingwith infinite dimensionalmatrices is not themost convenient
approach. Another representation that is usual in quantummechanics is thewave
function formalism. This is equivalent to replacing the Fock basis of equation 1 by
the uncountable set of orthogonal position eigenstates |𝑥⟩:

∣𝜓⟩ = ∫ ⟨𝑥∣𝜓⟩ |𝑥⟩ [2]

8



2.2 Complete CV state descriptions

Plugging equations 1 and 2 together, we get an expression of the wave function in
terms of the state vector in Fock basis:

𝜓(𝑥) = ⟨𝑥∣𝜓⟩ =
∞
∑
𝑛=0

⟨𝑥|𝑛⟩ ⟨𝑛∣𝜓⟩

=
∞
∑
𝑛=0

⟨𝑛∣𝜓⟩ 𝒩𝑛 ⋅ 𝐻𝑛(𝑥)𝑒−𝑥2/2,

wherewe used thewell-known expression of the Fock statewavefunction in terms
of the 𝑛-th Hermite polynomials 𝐻𝑛(𝑥):

⟨𝑥|𝑛⟩ = 𝒩𝑛 ⋅ 𝐻𝑛(𝑥)𝑒−𝑥2/2, [3]

where 𝒩𝑛 is some normalisation factor.
Wavefunctions are a helpful representation insofar as they are arguably easier

to reason about than infinite matrices and have a clear physical interpretation.
Computationally, however, they remain as hard to manipulate as the infinite mat-
rix representation, as in general in the absence of an elegant approximation, they
ultimately rely on a similar representation with infinitely many coefficient.

However, an important pattern emerged in equations 1 and 2: by choosing a
set of vectors from Hilbert space, we can obtain new descriptions of a given state,
with possibly different properties: the Fock basis can be used to express arbit-
rary states as a discrete superposition of countably many basis elements, whereas
the wave function description is uncountable and continuous. However, wave
function representations have advantages too, as they are better suited to model
position measurements and compute outcomes.

As Wigner function

Finally, a third state description close to the wave function representation for a
𝑘-mode mixed state 𝜌 is given by its Wigner function 𝑊𝜌(𝝃) [18]. In contrast to
the wave function that is only a function of one observable (e.g. position or mo-
mentum), the Wigner function is defined over the entire phase space given by
position and momentum simultaneously: 𝝃 = (𝑥1, 𝑝1, … , 𝑥𝑘, 𝑝𝑘)⊤.

It is given in terms of the position eigenvectors |𝐱⟩ by

𝑊(𝝃) = 𝑊(𝐱, 𝐩) = 1
𝜋𝑘 ∫

ℝ𝑘
d𝑘𝐪 ⟨𝐱 + 𝐪∣ 𝜌 ∣𝐱 − 𝐪⟩ 𝑒2𝑖𝐪⋅𝐩.

Given the Heisenberg uncertainty principle, this function cannot be a probability
distribution of position and momentum simultaneously. However, the Wigner
function is a so-called quasi-probability distribution: it is real-valued and normal-
ised, and has the further property that its marginal distribution are probability
distributions:

⟨𝑥𝑘∣ 𝜌 ∣𝑥𝑘⟩ = ∫
ℝ2𝑘−1

d𝑝1 …d𝑝𝑘d𝑥1 …d𝑥𝑘−1 𝑊𝜌(𝐱, 𝐩).

9



2 The CV model of quantum computation

The Wigner function offers an alternative to the wave function formalism that is
symmetric in the quadrature operators ̂𝐱 and 𝐩̂ and, crucially, that generaliseswell
to non-pure multi-mode states. We will see in the coming sections that Wigner
functions form the basis for the description of arbitrary Gaussian states.

2.3 Gaussian states

The complete CV state descriptions of the previous section will be impractical
for discrete approximations, as they are infinite and/or continuous. The most
naive solution would be to attempt to discretise the function domain or select a
finite subset of the basis sets as an approximation. Several drawbacks, which we
will discuss in more detail section 3.1, render this approach difficult in practice.
Instead, we will now present a well-behaved strict subset of CV states that form a
promising avenue of work for CV state approximation schemes: these states can
be completely defined in finite dimension, making them ideally suited for digital
simulations.

These states are known as Gaussian states: in the pure case they correspond
to states with Gaussian wave functions. A pure single-mode Gaussian state |Γ⟩ is
expressed by the wave function

⟨𝑥|Γ⟩ = ( 𝜋
Re𝛾 )

1
4

𝑒𝑖𝑝0𝑥𝑒− 1
2 𝛾(𝑥−𝑥0)2

, [4]

parametrised by two real parameters 𝑝0, 𝑥0 ∈ ℝ and the complex parameter 𝛾 ∈
ℂ+ = {𝑧 ∈ ℂ ∶ Re 𝑧 > 0} [19]. This can be generalised to arbitrary multi-mode
mixed states 𝜌 using their Wigner function. A 𝑘-mode mixed state 𝜌 is Gaussian
if it can be expressed as

𝑊𝜌(𝝃) = 1
𝜋𝑘

1
√det(𝝈)

exp( − (𝝃 − 𝐝)⊤𝝈−1(𝝃 − 𝐝)),

parametrised by the displacement vector 𝐝 ∈ ℝ2𝑘 and the symmetric positive
covariance matrix 𝝈 ∈ ℝ2𝑘×2𝑘. Given that 𝝈 is symmetric, any 𝑘-mode Gaussian
state can thus be parametrised by 2𝑘2+3𝑘 real values. This is in stark contrast with
any representation based on finite approximation of state vectors, where the num-
ber of basis elements grows exponentially in the number of modes 𝑘: if a single
mode is represented using 𝑛 basis elements, then describing 𝑘 modes require 𝑛𝑘

parameters.
As their names suggest, the displacement and covariance parameters ofGaus-

sian states also have a straightforward physical interpretation. They correspond
to the first and second (symmetric) statistical moments of the ̂𝐱 and 𝐩̂ observ-
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2.3 Gaussian states

ables [18, 20]:

𝐝 = (𝔼𝜌 ̂𝑥1, 𝔼𝜌 ̂𝑝1, … , 𝔼𝜌 ̂𝑥𝑘, 𝔼𝜌 ̂𝑝𝑘)
⊤

(first order moments)

𝜎𝑖𝑗 = 1
2𝔼𝜌[ ̂𝑅𝑖 ̂𝑅𝑗 + ̂𝑅𝑗 ̂𝑅𝑖] − 𝔼𝜌[ ̂𝑅𝑖]𝔼𝜌[ ̂𝑅𝑗] (second order moments)

[5]

Using equation 5, we can even imagine to obtain Gaussian approximations of any
CV state 𝜌 by truncating the Wigner function to first and second moments. In
many cases, this is of course a very crude approximation, especially as higher
energy components of the wave function begin to induce high frequency terms.
We will expand on this idea in more detail in section 2.5 and examine strategies
to approximate arbitrary states.

The Gaussian formalism is widely used in practice, both by theorists and ex-
perimentalists. Its popularity stems from the simplicity and ubiquity of Gaus-
sian states: most well-known states, as well as the vast majority of experimentally
feasible states happen to be Gaussian already. Perhaps even more significantly,
most experimentally feasible transformations preserve Gaussians, making Gaus-
sian computations central to CV computation theory. These Gaussian-preserving
operations will be the subject of the next section.

Gaussian transformations

Operations that preserve Gaussian states are called Gaussian transformations and
correspond to affine transformations of phase space [21]

𝝃 ↦ 𝐒𝝃 + 𝚫.

For the covariance matrix 𝝈, this corresponds to the transformation

𝝈 ↦ 𝐒𝝈𝐒⊤. [6]

The preservation of the standard commutation relations [𝑅̂𝑖, 𝑅̂𝑗] = 𝑖 𝛀𝑖𝑗 requires
that 𝐒 be symplectic, i.e. 𝐒𝛀𝐒⊤ = 𝛀. Quantum operations on Gaussian CV states
form the symplectic group Sp(2𝑘, ℝ) and are fully described by linear operations
on the phase space.

Themost commonGaussian operations are displacements, rotations and squeez-
ings. These operations take their names from their effect in phase space: they can
be elegantly visualised in phase space by plotting their effect on the Wigner func-
tion of CV states, see figure 2. Displacements provoke a global translation in phase
space, leaving the shape of the Wigner function (i.e. the covariance) unchanged.
Squeezing operations scale the two axes of the Gaussian by some factor 𝑠 and 𝑠−1

respectively, yielding ellipse-shaped Gaussians. Finally, rotations act as expected,
by rotating phase space.
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2 The CV model of quantum computation

Figure 2: Wigner functions for Gaussian transformations acting on the vacuum
state (𝐝 = 𝟎, 𝝈 = 𝟙2).

There are also Gaussian operations acting on multiple modes: the most used
two-mode transformation is the beamsplitter, which is easiest understood as a ro-
tation in the combined four dimensional phase space of the 2 modes. Any single-
mode Gaussian operation can be obtained by a combination of displacements,
squeezing operations and rotations, whilst any multi-mode Gaussian operations
are generated by beamsplitters together with arbitrary single-mode Gaussian op-
erations.

These transformations can also be related to specificHamiltonians, expressed
using the ̂𝑎†, ̂𝑎 operator formalism: affinedisplacements are generated by the terms
linear in ̂𝑎† or ̂𝑎, while the symplectic transformation 𝐒 are precisely those gener-
ated by quadratic Hamiltonians

𝐻̂ = ̂𝝃†𝐇 ̂𝝃

for some Hermitian matrix 𝐇 ∈ ℂ2𝑘×2𝑘. Hamiltonians at most quadratic in the
quadrature operators generate operations that we are able to implement in ex-
perimental setups; higher order terms require high energies to be performed and
remain a challenge in practice up to this day. However, Gaussian CV operations
are not universal for quantum computing, and as such non-Gaussian transforma-
tions are a key resource if we wish to perform arbitrary quantum operations [22,
23].

Non-Gaussian transformations

From the Wigner visualisation of CV transformations in figure 3, it is clear that
transformations that are not affine in phase space do not preserve Gaussianity. In
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2.3 Gaussian states

Figure 3: Non-linear transformations of phase space do not preserve Gaussian
states.

contrast to Gaussian operations, that form a well-understood theory, no frame-
work has been established that properly characterises general CV states and op-
erations; studying entanglement properties of arbitrary CV systems for example
remains a very active area of research among others [21, 24, 25]. Implementa-
tion of non-Gaussian gates in practice has proven challenging too and remains
the main challenge in the development of CV quantum computers [26].

Notably, however, it has long been known that any source of non-linearity
is universal; that is, the Gaussian CV framework, together with any one non-
Gaussian gate is enough to arbitrarily approximate any CV operation [22, 23].
Given this, several approaches have been developed to achieve universal CV com-
putation.

Two of the most popular non-Gaussian gates are the Kerr gate 𝐾(𝜅) and the
cubic phase gate 𝑉(𝛾)

𝑉(𝛾) = 𝑒𝑖(𝛾/3ℏ) ̂𝑥3 ie 𝑉(𝛾)† [ ̂𝑥
̂𝑝] 𝑉(𝛾) = [ ̂𝑥

̂𝑝 + 𝛾 ̂𝑥2] [7]

𝐾(𝜅) = 𝑒𝑖𝜅𝑛̂2 = 𝑒𝑖𝜅( ̂𝑎† ̂𝑎)2 ie 𝐾(𝜅)† ̂𝑎𝐾(𝜅) = I WILL SOLVE THIS [8]

The cubic phase gate is arguably the simplest cubic Hamiltonian that can be de-
vised and has a very nice interpretation in phase space as a parabola. On the other
hand, the Kerr interaction is popular in numerical Fock basis simulations because
it is diagonal and, as such, is trivial to compute. In experimental setups, other
gates such as the photon-number addition and substraction gates (PNA/PNS)
are also used; see e.g. [26] for a review.

As another resource of non-Gaussianity, one can consider Gaussian opera-
tions followed by tracing on parts of the system (the ancilla modes), similarly
to how non-unitary CPTP maps can be obtained on qubits by tracing out an-
cilla qubits. Crucially, however, the ancilla modes have to be prepared in a non-
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2 The CV model of quantum computation

Gaussian state. In this way, universal CV computing can still be achieved by repla-
cing the non-Gaussian resource from a non-Gaussian operation to a non-Gaussian
state that can be prepared ahead of time and independently of the rest of the com-
putation.

Consider for example the cubic phase gate defined in equation 7. Ghose and
Sanders have shown that this can be performed using an ancilla mode prepared
in the so-called cubic phase state ∣𝛾⟩ [27]

⟨𝑥∣𝛾⟩ = 𝑒𝑖𝛾𝑥3 . [9]

Indeed, for any position eigenstate |𝑥⟩, the following circuit

where 𝑒𝑖 ̂𝑥1𝑝̂2 is a Gaussian transformation – also known as the inverse of the CX
gate – and the measurement designates a 𝑥-basis measurement with outcome 𝑞.
This yields the output 𝑒𝑖𝛾𝑥3 |𝑥⟩, thus being equivalent to the cubic phase gate.

2.4 Gaussian Measurements
Finally, we will look at measurements on Gaussian states. It turns out that meas-
urements of e.g. 𝑥- or 𝑝-quadrature preserves Gaussians. Measurements of quad-
rature operators can be achieved experimentally throughhomodynedetection [18].
In its most general form, a Gaussian measurement on a subsystem 𝐵 with modes
𝐵1, … , 𝐵𝑁𝐵

is given by the POVM

Π̂𝐵(𝜼) = 𝜋−𝑁𝐵 ⎛⎜⎜
⎝

𝑁𝐵

∏
𝑗=1

𝐷̂𝐵𝑗
(𝜂𝑗)

⎞⎟⎟
⎠

𝚲Π̂
𝐵

⎛⎜⎜
⎝

𝑁𝐵

∏
𝑗=1

𝐷̂†
𝐵𝑗

(𝜂𝑗)
⎞⎟⎟
⎠

[10]

where
𝐷̂𝐵(𝜂𝑗) = exp(𝜂𝑗 ̂𝑏†

𝑗 − 𝜂𝑗
̂𝑏𝑗)

is the displacement operator. The result of the POVM is given by 𝜼, which indexes
the set of projections of equation 10, whilst 𝚲Π̂

𝐵 is the densitymatrix of someGaus-
sian state characterising the measurement. For equation 10 to be a POVM, it must
additionally hold that 𝜋−𝑁𝐵 ∫d2𝑁𝐵𝜼 Π̂𝐵(𝜼) = 1.

For an ideal 𝑥-homodyne measurement, for instance, the measurement is
given by

𝚲Π̂
𝐵 = |0⟩⟨0| ,
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2.5 Arbitrary states as superposition of Gaussians

where |0⟩⟨0| refers to the 0-position eigenstate (infinitely 𝑥-squeezed Gaussian).
Another well-known Gaussian measurement, the heterodyne measurement, is
given by 𝚲Π̂

𝐵 = |𝜈⟩⟨𝜈|, the Gaussian vacuum state (zero-th energy state).
Now, assume that the Gaussian state 𝚲Π̂

𝐵 is given by some covariance mat-
rix 𝚪Π̂

𝐵 and assume the measured CV state is composed of subsystems 𝐴 and 𝐵.
For the Gaussian state AB, split its covariance matrix 𝝈𝐴𝐵 into terms belonging to
subsystems A and B:

𝝈𝐴𝐵 = [ 𝝈𝐴 𝝐𝐴𝐵
𝝐⊤

𝐴𝐵 𝝈𝐵
] .

Then, after the measurement 𝚪Π̂
𝐵 on 𝐵, the state of subsystem 𝐴 is Gaussian and

can be expressed as [18]

𝝈Π̂
𝐴 = 𝝈𝐴 − 𝝐𝐴𝐵(𝝈𝐵 + 𝚪Π̂

𝐵 )−1𝝐⊤
𝐴𝐵. [11]

In practice, it suffices to be able to perform a single Gaussianmeasurement, as any
other can be obtained through Gaussian transformations [18]. Thus, equation 11
gives us a ready formula for simulating arbitrary measurements.

There are also non-Gaussian measurements such as photon counting. The
resulting states from such measurements cannot be expressed in the Gaussian
formalism. However, closed analytical expressions exist in some cases; photon
counting outcomes from Gaussian states for example can be obtained through
Hafnians [28]. We will not discuss this further and will focus on Gaussian meas-
urements for the rest of this work.

Putting these observations together, we can conclude that to simulate arbit-
rary CV computations, we need to be able to
(i) represent and store arbitrary states,
(ii) simulate Gaussian transformations on arbitrary states,
(iii) prepare one non-Gaussian resource state (such as the cubic phase state),
(iv) perform homodyne measurements on arbitrary states.
This will be the topic of the next chapter. The remainder of this chapter will be
spent on studying the power of superposition of Gaussians to approximate arbit-
rary states.

2.5 Arbitrary states as superposition of Gaussians
The Gaussian approximation is a very convenient and successful description of
simple CV states and operations. It makes excellent predictions for most currently
feasible experiments and low energy states. However, we saw that Gaussian-
preserving operations do not form a universal set for CV computation – in fact,
all Gaussian operations can be efficiently simulated on classical computers, us-
ing the finite-dimensional description given in equation 5, so that the ability of
simulating Gaussian operations only is in effect useless.
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2 The CV model of quantum computation

In the coming sections and for much of this dissertation, we will study how
to expand the Gaussian formalism beyond the limited scope of Gaussian CV com-
puting, with the aim of leveraging its elegant description that can be easily simu-
lated in a broader context. To that end, we propose to express an arbitrary pure
CV state ∣𝜓⟩ as superpositions of Gaussians ∣Γ1⟩ , … , ∣Γ𝑀⟩:

∣𝜓⟩ =
𝑀
∑
𝑖=1

𝛼𝑖 ∣Γ𝑖⟩ , for some 𝛼1, … , 𝛼𝑀 ∈ ℂ.

A Gaussian operation 𝑈𝒢 can then easily be computed for arbitrary states by ap-
plying them separately on each Gaussian of the superposition:

𝑈𝒢 ∣𝜓⟩ =
𝑀
∑
𝑖=1

𝛼𝑖𝑈𝒢 ∣Γ𝑖⟩ .

Such a superposition of Gaussians (SoG) expression can be obtained for any CV
state ∣𝜓⟩. This followsdirectly froma straightforward generalisation of theWigner-
Wiehl transform [29].

In practice, we are interested in knowing how well the SoG approximation
works with a small number of Gaussians. We thus now proceed to perform some
numerical experiments for SoG approximations of two of the most common non-
Gaussian states: Fock states and cubic phase states.

Fock states

A good first proof of concept is to try to express the energy eigenstates of QHO as
superpositions of Gaussians. Expressing energy eigenstates as Gaussian super-
positions is of interest, as it automatically generalises to arbitrary CV states, given
that the eigenstates span the Fock space.

To find the best SoG approximation numerically, we will use least squares
optimisation with trust regions [30], as implemented in scipy.optimize by the
routine optimize.least_squares(method='dogbox') [31]. Given that Fock wave
functions have no imaginary part (i.e. the amplitudes are real), we can simplify
our SoG ansatz to the following:

𝜓|𝑛⟩(𝑥) ≈ ̃𝜓|𝑛⟩(𝑥) =
𝑀
∑
𝑖=1

𝑎𝑖 exp( − 1
2𝛾𝑖(𝑥 − 𝜇𝑖)2). [12]

The number of Gaussians 𝑀 is fixed and we optimise the real parameters

𝑎𝑖, 𝜇𝑖, 𝛾𝑖 ∈ ℝ for 𝑖 = 1, … , 𝑀

The least squares reminder is given by

𝑅2 = ∫
𝐼
(𝜓|𝑛⟩(𝑥) − ̃𝜓|𝑛⟩(𝑥))

2
d𝑥 ≈

𝑛𝑠

∑
𝑗=1

(𝜓|𝑛⟩(𝑥𝑗) − ̃𝜓|𝑛⟩(𝑥𝑗))
2

⋅ Δ𝑥𝑗,
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2.5 Arbitrary states as superposition of Gaussians

where 𝑥1, … , 𝑥𝑛𝑠
is some sampling of the interval 𝐼 being integrated over, and Δ𝑥𝑗

denotes the size of the interval around 𝑥𝑗.
Let us make a few observations about the Fock states in order to fix a value

for the number of superpositions 𝑀 and choose an educated initial guess for the
optimisation parameters. Recalling equation 3, we can find the roots and local
extrema of the Fock states analytically:

𝜓|𝑛⟩(𝑥) = 𝒩𝑛 ⋅ 𝐻𝑛(𝑥)𝑒−𝑥2 != 0
⇔ 𝐻𝑛(𝑥) = 0 [13]

d
d𝑥𝜓|𝑛⟩(𝑥) = 𝒩𝑛 ⋅ (−2𝑥𝑒−𝑥2)𝐻𝑛(𝑥) + 𝒩𝑛 ⋅ 𝑒−𝑥2 d

d𝑥𝐻𝑛(𝑥) != 0

⇔ (−2𝑥𝑒−𝑥2)𝐻𝑛(𝑥) + 𝑒−𝑥2(2𝑥𝐻𝑛(𝑥) − 𝐻𝑛+1(𝑥)) = 0
⇔ 𝐻𝑛+1(𝑥) = 0 [14]

That is, the roots of |𝑛⟩ correspond to the roots of the 𝑛-thHermite polynomial and
the local extrema correspond to the roots of the (𝑛 + 1)-th Hermite polynomial.
Since 𝐻𝑛 is a polynomial of order 𝑛, we deduce that the 𝑛-th energy state has 𝑛
roots and 𝑛 + 1 local extrema. The case 𝑛 = 5 can be seen in Figure 4b (black line
on rightmost plot). In order to be able to approximate each local extremum with
a Gaussian, we can initially set 𝑀 ∶= 𝑛 + 1 – we will get back to discussing this
choice towards the end of this section.

Pursuing the idea of using one Gaussian for each local extrema ℓ1, … , ℓ𝑛+1,
we can set the initial means at the local extrema: 𝜇𝑖 ∶= ℓ𝑖. We then set the sign of
the respective amplitudes to match maxima and minima: 𝑎𝑖 = sign(ℓ𝑖) ⋅ 𝐴, where
𝐴 is some default value for the amplitude. In our experiments, 𝐴 = 0.4 worked
well. Finally, the initial standard deviations are set to some fixed value; we used
𝜎𝑖 = 1

√𝛾𝑖
= 0.2.

The lowest approximation error is achieved by superposed Gaussians with
large amplitudes and large standarddeviations, but such approximations are prone
to overfitting and noise: large amplitudes and large standard deviations cancel-
ling eachother are undesirable as they are non-local, require more entanglement
and are more susceptible to noise.

We study this closer in figure 4. The left plot (fig. 4a) shows how the relative
approximation error decreases as maximal standard deviation increases, until the
errors plateau at 10−6 – 10−7, reaching the limits ofmachine precision. We can also
see that required standard deviations required decrease as we consider higher en-
ergy fock states. However, the right plot (fig. 4b) highlights that this increased
precision comes at the cost of overfitting: between the middle (𝜎max = 0.8) and
rightmost plot (𝜎max = 1.4), the dashed teal Gaussians that sum up to the Fock
state approximation (in black) increase dramatically in amplitude and standard
deviation, with a very minimal increase in precision. While the resulting approx-
imation of the Fock state in the leftmost plot is perceptibly imperfect, the approx-
imation in the two plots on the right is indistinguishable from the actual Fock
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2 The CV model of quantum computation

state: the relative errors for the leftmost plot is 46%, whereas the two other are of
order 10−3 and 10−5 respectively. Thus, in this case, setting the maximum stand-
ard deviation to 𝜎max = 0.8 yields an acceptable approximation whilst limiting
overfitting. Using 𝑀 = 𝑛 + 1 Gaussians, we obtain indeed a faithful SoG approx-
imation of the 𝑛-th Fock state. For 𝑛 = 5, the relative error drops below 0.1% for
𝜎max ⩾ 0.8, becoming even smaller for higher energy states.

(a) Approximation error as a function
of maximum standard deviation.

(b) Gaussian approximations for three different
maximum standard deviation constraints.

Figure 4: Influence of maximum standard deviation on approximation error and
overfitting, for Gaussian approximations of the 𝑛 = 5 Fock state.

This result can be extended to arbitrary CV states: consider a CV state ∣𝜓⟩
with maximal energy level 𝑛max, i.e. that can be expressed as a superposition of
energy states |0⟩ , … , ∣𝑛max⟩. Since the 𝑛-th energy state can be expressed as SoG
of 𝑛 + 1 Gaussians, it follows that the ∣𝜓⟩ state can be approximated as SoG of

𝑛max

∑
𝑛=0

𝑛 + 1 = (𝑛max + 1)(𝑛max + 2)
2 = 1

2𝑛2
max + 𝑂(𝑛max). [15]

Gaussians.
This result provides a practical benchmark for SoG approximations of CV

states. In implementations, the limiting factors will come from the number of
superpositions that can be constructed and the precision that can be achieved for
the respective amplitudes, as well as the minimum standard deviation that can
be resolved: if the approximation is run on CV hardware, this will for instance be
given by the squeezing amounts achievable.

Finally we can consider whether the number of Gaussians 𝑀 in the SoG ap-
proximation of the 𝑛-th energy eigenstate can be reduced to less than 𝑛+1. Figure
5 shows the error rates achievable for smaller values of 𝑀. The number of Gaus-
sians is given as a proportion of the number of local extrema: 𝑀

𝑛+1 . For 𝑀 = 𝑛 + 1,
error rates of order 10−6 are achievable, as we saw in Figure 4. For any value
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2.5 Arbitrary states as superposition of Gaussians

𝑀 < 𝑛 + 1, however, the Fock state approximations fail with error rates of unit
order of magnitude (above the dashed 40% error threshold). This confirms the
choice 𝑀 = 𝑛 + 1: for smaller values of 𝑀 ⩽ 𝑛, the approximation error imme-
diately jumps to over 40%, confirming that the bound in equation 15 is tight for a
Fock-based approximation scheme.

Figure 5: Approximation error for four Fock states as a function of the number of
superposed Gaussians used in the approximation.

The cubic phase state

We had motivated the SoG approximation ansatz to be able to simulate arbitrary
non-Gaussian transformations. The cubic phase state, as we saw above, is one of
the most popular resources for non-Gaussian computations. Following the same
ansatz as for Fock states, we are now interested in finding an SoG approximation
for the cubic phase state. Recall that the cubic phase state (eq. 9) is given by

𝜓cubic(𝑥) = 𝑒𝑖𝛾𝑥3 .

First of all, it is important to remark that the cubic phase state cannot be normal-
ised, and as such it can only be approximately reproduced experimentally. Note
also that in contrast to the approximation of Fock states discussed above, the cubic
phase state has complex amplitude, so that we can no longer ignore the imaginary
part of the wave function. We generalise our previous ansatz to a superposition
of complex Gaussians

̃𝜓|𝑛⟩(𝑥) =
𝑚

∑
𝑖=1

𝑎(𝑖)exp(𝑖𝑝(𝑖)
0 𝑥) ⋅ exp( − 1

2(𝛾(𝑖)
Re + 𝑖𝛾(𝑖)

Im)(𝑥 − 𝜇(𝑖))2),

where 𝑎(𝑖), 𝑝(𝑖)
0 , 𝛾(𝑖)

Re , 𝛾(𝑖)
Im and 𝜇(𝑖) are real variables to be optimised. We further

adapt the least squares optimiser to minimise for both the real part and imaginary
part of residuals.
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2 The CV model of quantum computation

To obtain a normalised state, we clip the cubic phase state to a finite interval
around zero. We (arbitrarily) choose the initial parameters to coincide with the
local extrema of the real part of the wave function. The real part oscillates as given
by the term cos(𝛾𝑥3), so that there are infinitely many local extrema. Choosing a
value of 𝑀 and picking the 𝑀 extrema closest to zero will fix the interval used for
the cubic phase state approximation.

In practice, the size of the finite support interval will be dictated by the num-
ber of Gaussians that can be superposed, or by the smallest standard deviation
achievable. For the latter, we can use a first-order approximation to see how the
distance between two local extrema Δ𝜉 decreases with larger |𝑥|

𝛾(𝑥 + Δ𝜉)3 − 𝛾𝑥3 = 2𝜋 ⟺ Δ𝜉 ≈ 2𝜋
3𝛾𝑥2 .

The distance between peaks Δ𝜉 gives a good estimate of the resolution necessary
for the standard deviation 𝜎 of the Gaussians, as we expect them to scale linearly:

𝜎 ∝ Δ𝜉 ∝ 1
𝑥2 .

Figure 6 shows the resulting SoG approximation. The cubic phase parameter was
set to 𝛾 = 0.0118, the support was clipped to the interval [−15, 15] and the stand-
ard deviations were clipped to 𝜎max = 2.045. The small relative error (0.4%)
makes the resulting approximation given in black indistinguishable from the tar-
get cubic phase state.

Figure 6: Gaussian approximation of the cubic phase state. The Gaussians
(dashed line) sumup to an approximation of the cubic phase state (solid
line).

The cubic phase state is a promising non-Gaussianity resource in theory, as
we saw that it can be used to implement the cubic phase gate usingGaussian oper-
ations. In practice, however, the fact that it is impossible to normalise means that
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2.5 Arbitrary states as superposition of Gaussians

successful use of the cubic phase state will always depend on how accurately it
can be approximated. We followed the arguably simplest normalisation approach,
which consists in clipping the state to finite support on the 𝑥-axis. Note that this is
equivalent to clipping to low energymodes: the cubic phase state exponent grows
with |𝑥|, and thus so does its energy.

The impact of the size of the finite support interval on the approximation of
the cubic state can be visualised in figure 7. There, the Wigner function of the
approximated cubic phase state is plotted for different interval sizes, increasing
from left to right. In the plots, the 𝑥-axis was rescaled to be independent of 𝛾, as
the cubic phase state only depends on 𝛾𝑥3. The interval sizes on both 𝑥 and 𝑝 di-
mensions are multiples of the plotted phase space: from left to right corresponds
to 𝑥 and 𝑝 support intervals that are double, respectively 4, 6 and 8 times the size
of the plotted phase space.

Figure 7: Wigner function of cubic phase state approximation for different clip-
pings. The 𝑥-axis was rescaled to be independent of 𝛾. Note that in
these visualisations both 𝑥 and 𝑝 were clipped for numerical reasons.

We see that clipping the support interval induces significant noise in the state:
while, the Wigner function in the rightmost plot coincides with the Wigner func-
tion, the other plots suffer from large approximation errors. Even in the third plot
from the left, where the plotted position andmomentumonly represents one sixth
of the clipping window for each axis, we obtain a relative approximation error of
49%. For the cubic phase state plotted in figure 6, this would correspond to a 𝑥-
clipping to [−26, 26] and a superposition of 132 Gaussians – as opposed to the
[−15, 15] interval of figure 6 that uses 43 Gaussians.

We can also visualise the approximation error of figure 6 by directly plotting
the Wigner function of the SoG approximation. This can be seen in figure 8. The
left plot shows the cubic phase state SoG approximation at the same scale as the
plots in figure 7. The approximation at that scale is so poor that it is impossible to
even recover the cubic phase state. This is not surprising given that the [−15, 15]
clipping interval corresponds to ≈ 3𝛾−1/3, i.e. to a cubic phase state approxim-
ation between the first and second plot on the left. The approximation will be
better for smaller values of 𝛾, since the support interval will be larger relative to
the scaled position: this can be seen in the right plot showing theWigner function
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2 The CV model of quantum computation

of the SoG cubic phase state approximation for 𝛾 = 0.06.

Figure 8: The Wigner function for the SoG cubic phase state approximation.

2.6 Entangled Gaussian states as superpositions
Given the success of the SoG approach to approximate arbitrary CV states, we
nowwish to apply it to two-mode entangled Gaussians. Indeed, if it is possible to
express arbitrary singlemode states as superpositions ofGaussians, i.e. Gaussians
form an overcomplete basis of single mode CV states, then it must be that product
of Gaussians span the entire space of multi mode CV states, and in particular
entangled Gaussians. We call this approach superposition of product Gaussians
(SoPG).

In contrast to 𝑛 mode arbitrary Gaussians, whose covariance matrix is ex-
pressed by 𝑂(𝑛2) terms, product states can be expressed by 𝑛 matrices of size
2 × 2, i.e. with 𝑂(𝑛) terms. Not only is the necessary storage space smaller for
product states, but computations are also cheaper: consider an arbitrary 𝑛 mode
Gaussian with covariance

𝝈𝐴𝐵 = [ 𝝈𝐴 𝝐𝐴𝐵
𝝐⊤

𝐴𝐵 𝝈𝐵
] .

Assume that the subsystem 𝐴 has 1 mode and the subsystem 𝐵 has the remaining
𝑛 − 1 modes. An arbitrary one mode Gaussian transformation on 𝐴 is given by
some 2 × 2 symplectic matrix 𝐒, and by equation 6, acts on 𝝈𝐴𝐵 as follows:

𝝈𝐴𝐵 ↦ (𝐒 ⊕ 𝟙2(𝑛−1)) 𝝈𝐴𝐵 (𝐒⊤ ⊕ 𝟙2(𝑛−1)) = [𝐒𝝈𝐴𝐒⊤ 𝐒𝝐𝐴𝐵
𝝐⊤

𝐴𝐵𝐒⊤ 𝝈𝐵
] [16]

In contrast, product states are characterised by 𝝐𝐴𝐵 = 0, so that the symplectic
operation simplifies to

𝝈𝐴𝐵 ↦ [𝐒𝝈𝐴𝐒⊤ 0
0 𝝈𝐵

] . [17]

Hence, local single mode operations on arbitrary entangled 𝑛 mode states require
𝑂(𝑛) operations, whereas the same operation on product states can be performed
in 𝑂(1) operations.
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2.6 Entangled Gaussian states as superpositions

In order to be applicable in practice, we are focusing on approximating en-
tangled Gaussians as SoPG expressions that are as simple as possible, at the cost
of higher errors. This can be achieved using a least squares approach similar to the
SoG approximations in 2.5. In the rest of the section, we will look at the simplest
possible SoPG approximation, given by superpositions of two Gaussians for two
mode entangled states.

Consider a two mode Gaussian |Γ⟩ obtained from the vacuum state by one
single-mode squeezing on each mode, followed by a two-mode beamsplitter:

|Γ⟩ = 𝐁𝐒(𝜃) (𝐒(𝜉1) ⊕ 𝐒(𝜉2)) |𝜈⟩ ,

where |𝜈⟩ is the vacuum state, characterised by zero displacement and identity
covariance matrix. The covariance matrix of |Γ⟩ is given by

𝝈Γ = 𝐁𝐒(𝜃) (𝐒(𝜉1) ⊕ 𝐒(𝜉2)) 𝟙4 (𝐒(𝜉1)⊤ ⊕ 𝐒(𝜉2)⊤) 𝐁𝐒(𝜃)⊤

= 𝐁𝐒(𝜃)
⎡
⎢
⎢
⎢
⎣

𝑒−2𝜉1 0 0 0
0 𝑒2𝜉1 0 0
0 0 𝑒−2𝜉2 0
0 0 0 𝑒2𝜉2

⎤
⎥
⎥
⎥
⎦

𝐁𝐒(𝜃)⊤

= 𝑒−2𝜉1 ∣𝐑𝑥𝐞1⟩⟨𝐑𝑥𝐞1∣ + 𝑒2𝜉1 ∣𝐑𝑝𝐞2⟩⟨𝐑𝑝𝐞2∣ + 𝑒−2𝜉2 ∣𝐑𝑥𝐞3⟩⟨𝐑𝑥𝑒3∣
+ 𝑒2𝜉2 ∣𝐑𝑝𝐞4⟩⟨𝐑𝑝𝐞4∣ , [18]

where 𝐞1, … , 𝐞4 ∈ ℝ4 represent the canonical basis and

𝐑𝑥 =
⎡
⎢⎢⎢
⎣

cos 𝜃 0 − sin 𝜃 0
0 1 0 0

sin 𝜃 0 cos 𝜃 0
0 0 0 1

⎤
⎥⎥⎥
⎦

𝐑𝑝 =
⎡
⎢⎢⎢
⎣

1 0 0 0
0 cos 𝜃 0 − sin 𝜃
0 0 1 0
0 sin 𝜃 0 cos 𝜃

⎤
⎥⎥⎥
⎦

are rotation matrices. The reason for the slightly awkward notation in equation
18 is to highlight how the beamsplitter in effect rotates the squeezed state in the
𝑥- and 𝑝-modes independently. We can thus restrict our considerations to the 𝑥-
axes, so that in effect we are only considering a two dimensional space. The 𝑝
dimensions are identical (and independent).

Considering only the 𝑥1- and 𝑥2-modes with covariance matrix given by 𝝈𝑥,
we can express the Gaussian |Γ⟩ using the three parameters 𝑎, 𝑏, 𝑐 ∈ ℝ:

𝝈−1
𝑥 = [𝑎 𝑐

𝑐 𝑑] .
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2 The CV model of quantum computation

The Gaussian can be rewritten as follows (for some normalisation 𝒩Γ ∈ ℝ)

1
𝒩Γ

exp(−1
2 (𝑎𝑥2

1 + 2𝑐𝑥1𝑥2 + 𝑏𝑥2
2))

= 1
𝒩Γ

exp⎛⎜
⎝

−1
2𝑎 (𝑥1 + 𝑐

𝑎𝑥2)
2

− 1
2 (𝑏 − 𝑐2

𝑎 ) 𝑥2
2
⎞⎟
⎠

= 1
𝒩Γ

exp(−1
2𝑎 (𝑥1 + 𝑐

𝑎𝑥2)) exp(−1
2 (𝑏 − 𝑐2

𝑎 ) 𝑥2
2) .

This is almost a product of single mode Gaussians, except that the mean of the
𝑥1-Gaussian depends on 𝑥2. We can thus imagine a SoPG approximation scheme
by replacing the 𝑥2 dependency by a sum of Gaussian with fixed means along the
(− 𝑐

𝑎𝑥2, 𝑥2)-axis. In other words, we make the following ansatz to approximate |Γ⟩
as a superposition of two product Gaussians:

𝛼
2

∑
𝑖=1

exp(−1
2(𝐱 − 𝐝𝑖)⊤ [𝑎 0

0 𝛽] (𝐱 − 𝐝𝑖)) , where
⎧{
⎨{⎩

𝐱 = [𝑥1 𝑥2]
⊤

𝐝1,2 = ± [− 𝑐
𝑎𝛾 𝛾]

⊤
.

[19]

with model parameters 𝛼, 𝛽, 𝛾 ∈ ℝ. Note how we have used the symmetry of
Gaussian state in the ansatz. These parameters can be optimisedwith least squares.
An example of the resulting approximation is shown in figure 9.

Figure 9: SoPG approximation of an entangled Gaussian state as a superpostion
of 2 Gaussians. Only the 𝑥1 and 𝑥2 position quadratures are plotted.
This example corresponds to the parameters 𝑎 = 0.4721, 𝑏 = 0.1380 and
𝑐 = −0.1005.
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3 Simulating CV computations
Given the potential of CV quantum computations and the current lack of hard-
ware capable of executing continuous operations natively, the research in simula-
tion of CV operations is a topic of central importance. This is precisely the focus
of this work.

Research into CV simulation has so far been limited and focused on simula-
tions on classical hardware, with arguably the most recognised effort being the
Strawberry Fields project [32]. While advances have been made towards genu-
inely continuous quantum computers [26, 33], the recent progress in qubit-based
quantumcomputing [34–36] suggests that the first genuine applications in quantum
computing are likely to be qubit-based.

Our discussion of CV descriptions in the last chapter gives us an excellent
foundation to design and compare simulationmodels. In this chapter, wewill dis-
cuss existing simulations of CV operations on classical hardware and make first
steps to design an approach suitable for qubit hardware. We postulate that SoG
approximations as presented in section 2.5 can leverage the non-classical compu-
tational power of quantum qubit devices. This could allow to run arbitrary CV
computations on qubit devices and take advantage of quantum speedup in the
absence of CV computers.

3.1 The classical Fock based approximation
The most straightforward representation of a CV state on a discrete machine is
through projection onto a finite dimensional Hilbert space. CV states can then
be stored using the finite state vector. This corresponds to choosing a basis of
CV state space and fixing the finite dimensional Hilbert space by selecting a finite
subset of the basis.

The Fock basis is a popular choice as it is discrete and orthogonal. A finite
subset is obtained by setting a maximum energy level 𝐸𝑛 and discarding the Fock
states of higher energies

∣𝜓⟩ ≈
𝑛

∑
𝑘=0

𝛼𝑘 ∣𝑘⟩ , 𝛼0, … , 𝛼𝑛 ∈ ℂ.

Using orthogonality, the components can easily be obtained by 𝛼𝑘 = ⟨𝑘∣𝜓⟩ for
𝑘 = 0, … , 𝑛. This representation can simulate arbitrary CV operations and works
well for low energy states and a small number of modes. It is widely used in
practice for classical simulations [32].

However, this representation has several drawbacks. Firstly, like any exact
classical simulation of quantum computation, it suffers from exponential scaling
in the number of modes: the state vector of a 𝑘-mode system with energy levels
⩽ 𝑛 has 𝑛𝑘 components. This could be solved by a simulation on a qubit quantum

25



3 Simulating CV computations

computer if the Fock basis vectorswere encoded in an orthonormal basis of a qubit
Hilbert space (e.g. in the computational basis).

The second, more fundamental, problem is that many usual CV operations
are hard to express in the truncated Fock basis. As an example, consider the
simplest Gaussian operation: displacement. Recall that a displacement 𝐷(𝛼) in
the Gaussian formalism is given by

𝐷(𝛼) [𝑥
𝑝] = √2 [Re(𝛼)

Im(𝛼)] + [𝑥
𝑝] ,

that is, the displacement operator shifts the mean position and momentum while
leaving the shape of the wave function unchanged. The closed form expression
for 𝐷(𝛼) in the Fock basis is given by [20]

𝐷(𝛼) |𝑛⟩ =
𝑛

∑
𝑘=0

√𝑘
𝑛 exp(−1

2|𝛼|2)(−𝛼∗)𝑛−𝑘𝐿𝑛−𝑘
𝑛 (|𝛼|2) ∣𝑘⟩

+
∞
∑

𝑘=𝑛+1
√𝑛

𝑘 exp(−1
2|𝛼|2)𝛼𝑘−𝑛𝐿𝑘−𝑛

𝑛 (|𝛼|2) ∣𝑘⟩ ,
[20]

where 𝐿𝑑
𝑛(𝑥) are the extended Laguerre polynomials.

In the case of a Fock-based simulation on a qubit device, implementing the
displacement operation 𝐷(𝛼) would correspond to performing the unitary with
entries given by the summands of equation 20. With current technology, such
an operation is very hard to decompose into circuit gates and will be extremely
sensitive to noise. Given that the matrix is dense and non-local, it will also scale
poorlywith increasingmaximum energy and truncating it to finite dimensionwill
mean that the approximated operation will be non-unitary.

In summary, Fock-based approximation schemes are hard and impractical
to implement on qubit devices with limited resources. Other similar approaches
based on projections onto finite dimensional Hilbert spaces, for example based on
a finite discrete subset of position eigenfunctions, suffer from the same limitations,
where simple Gaussian operations become hard to implement in circuits.

For near-term implementation of CV operations on qubit devices, an altern-
ative approach is needed. Ideally, this would combine the expression power of
the Fock basis representation with the efficiency of the Gaussian representation
for Gaussian operations. Given that arbitrary CV operations can be expressed us-
ing Gaussian operations and one single type of non-Gaussian gate, a speedup in
Gaussian simulations could result in a significant overall performance increase.
This is precisely what SoG approximations promise.

3.2 Gaussian operations on digital quantum hardware
The first step in devising a quantum implementation of SoG approximations is
to fix how Gaussians and their operations are represented. We will explore two
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3.2 Gaussian operations on digital quantum hardware

alternatives, which we will call amplitude encoding and qubit encoding respect-
ively. In amplitude encoding, we leverage the density matrix representation of
qubit states to encode a covariance matrix 𝜎 as a mixed states 𝜌. The qubit encod-
ing on the other hand maps Gaussian states to the computational basis.

Amplitude encoding

Given that both mixed states and the covariance matrix of Gaussian states are de-
scribed by positive-definite symmetric matrices, it is natural to suggest a Gaussian
state representation using mixed states. We assign to each Gaussian state a qubit
state with density matrix given by the covariance matrix of that state, unique up
to trace normalisation:

𝝈 ↦ 𝝆 ∶= 1
Tr𝝈 𝝈.

Displacement and normalisation factors need also be stored separately. Displace-
ment can be represented and manipulated in a very similar way to the covariance
matrix, whilst normalisation factors aremost easily stored classically (𝑛 scalar val-
ues for 𝑛 modes). In the following, we will focus on representing the most inter-
esting part, the covariance matrix.

In this encoding, singlemodeGaussianCV states correspond to a single qubit.
The number of qubits grows logarithmically with the number of modes: 8 modes
are described by a 16 × 16 covariance matrix, given by 4 qubits. One way to view
the correspondence between modes and qubits in amplitude encoding is to split
the qubits in two groups: the least significant qubit (by convention) encodes the
covariance matrix of eachmode, whilst all the remaining qubits serve to index the
right covariance matrix:

In this example, the mode is indexed using binary encoding. Performing a local
operation on a subset of modes can then be achieved by controlling the desired
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3 Simulating CV computations

operation on the index qubits. This can become expensive for many modes de-
pending on the cost of Toffoli gates. Alternative encodings to the binary encoding
could solve this problem at the cost of less efficient encodings (i.e. more indexing
qubits): for instance, using a linear encoding 𝑏0 … 𝑏𝑛 where 𝑏𝑖 = 𝛿𝑖𝑘 encodesmode
𝑘 would only require simply controlled operations (i.e. CNOTs) at the expense
of a number of qubits linear in the number of modes. Arbitrary encodings can
be devised to take advantage of the trade-off between the number of qubits and
complexity of local operations depending on the computational costs incurred in
practice.

How do we then implement Gaussian operations? Gaussian transformations
are given by symplectic transformations 𝑆 of the density matrix:

𝝈 ↦ 𝐒𝝈𝐒𝑇.

These must be implemented by unitary evolution of the type 𝐔†𝝈𝐔, or more gen-
erally by completely positive trace-preserving (CPTP) maps obtained from unit-
aries performed on an augmented state, following by tracing and possibly post se-
lection (Stinespring dilation) [37]. This can be achieved using the Euler-Messiah
decomposition [20]: for any symplectic transformation 𝑆, there are orthogonal
matrices 𝑂, 𝑂′ and a diagonal matrix 𝐷 such that 𝐒 = 𝐎1𝐃𝐎2, and hence

𝝈 ↦ 𝐎𝑇
1 𝐃𝑇𝐎𝑇

2 𝝈𝐎𝟏𝐃𝐎𝟐.

The orthogonal transformations are in particular unitary, so that they can be seen
as usual quantum operations on density matrices. The diagonal transformation,
on the other hand, can be achieved by a CPTP map, albeit with a non-zero prob-
ability of failure. Here too, the operation must be normalised first

𝐃 ↦ 1
det(𝐃)𝐃.

In the following, we assumewithout loss of generality that this is already the case.
An operation given by a diagonal 2𝑛 × 2𝑛 matrix can be achieved by a 2𝑛+1 ×

2𝑛+1 unitary transformation. The quantum computation on the enlarged system
can then be traced out to the original system to obtain the desired diagonal trans-
formation 𝐃. Given that the transformation must be normalised, all diagonal
entries diag(𝐃) = (𝑑1, … , 𝑑2𝑛)⊤ satisfy 0 ⩽ 𝑑𝑖 ⩽ 1 for 1 ⩽ 𝑖 ⩽ 2𝑛. The columns of
𝐃 can thus be completed to orthogonal 2𝑛+1-vectors:

𝑑𝑖𝐞𝑖 ↦ 𝑑𝑖𝐞𝑖 + √1 − 𝑑2
𝑖 𝐞2𝑛+𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐠𝑖 ∶=
∈ ℝ2𝑛+1 .

These can be put together into an isometry 𝐗 ∈ ℝ2𝑛+1×2𝑛

𝐗 ∶= [𝐠1 … 𝐠2𝑛] = ⎡⎢
⎣

𝐃
√𝟙2𝑛 − 𝐃2

⎤⎥
⎦

with 𝐗†𝐗 = 𝟙2𝑛+1 [21]
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3.2 Gaussian operations on digital quantum hardware

The 𝐗 matrix of size 2𝑛+1×2𝑛 can be completed to a 2𝑛+1×2𝑛+1 unitarymatrix
𝐔, for instance using Gram-Schmidt orthonormalisation. This yields a 2𝑛+1 × 2𝑛

matrix 𝐘 such that

𝐔 ∶= [𝐗, 𝐘] with 𝐔†𝐔 = 𝐔𝐔† = 𝟙2𝑛+1 .

From 𝐔, it is easy to recover the matrix 𝐃 by post-selecting the ancillary qubit
𝐴:

⟨0𝐴∣ 𝑈 ∣0𝐴⟩ ∣𝜓⟩ = 1
𝒦

𝐷 ∣𝜓⟩ , [22]

where the renormalisation factor 𝒦 implies that the computation will fail with
probability 𝑓 = 1 − 1

𝒦 .
A high failure probability 𝑓 can make computations considerably slower, or

even infeasible as the failure rates multiply with the number of gates. 𝑓 typically
depends on the state ∣𝜓⟩ of the system. In the worst case, we get

𝑓max = 1 − min
1⩽𝑖⩽2𝑛

𝑑𝑖.

This value will be related to the amount of squeezing performed by the operation:

for the case of single mode squeezing by a factor 𝑠, we have 𝐃 = [𝑒2𝑠 0
0 𝑒−2𝑠], and

thus
𝑓 ≈ 1 − 𝑒−2𝑠 ≈= 2𝑠.

These significant failure rates are obviously bad news for practical applica-
tions. One approach to reducing the failure rate is to look for alternative CPTP
maps where states from failed attempts can be corrected to the required form in-
stead of being discarded. One promising avenue of work is to change how the
columns of 𝐃 are normalised: instead of defining 𝐗 as in equation 21, we can
consider obtaining an isometry 𝐗′ by using permutations of 𝐃: 𝜎1(𝐃), … , 𝜎𝑘(𝐃),
where the 𝜎𝑖 denote some permutation of {1, … , 2𝑛} and 𝜎𝑖(𝐃) denotes the matrix
𝐃 with diagonal entries permuted by 𝜎𝑖:

𝜎𝑖(𝐃) ∶= diag(𝜎𝑖(𝑑1, … , 𝑑2𝑛)), 1 ⩽ 𝑖 ⩽ 𝑘.

We choose permutations 𝜎1, … , 𝜎𝑘 such that there exists 𝑅 = diag(𝑟1, … , 𝑟2𝑛) > 0,
with entries 𝑟1, … , 𝑟2𝑛 as small as possible that satisfy

𝐗 ∶=

⎡⎢⎢⎢⎢⎢
⎣

𝐃
𝜎1(𝐃)

⋮
𝜎𝑘(𝐃)

𝐑

⎤⎥⎥⎥⎥⎥
⎦

⟹ 𝐗†𝐗 = 𝟙2𝑛 . [23]

This can then be extended to a unitary matrix with Gram-Schmidt in the same
way as earlier. Note that we are now not using one ancilla qubit but ⌈log2 (𝑘 + 2)⌉
ancilla.
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3 Simulating CV computations

The way to read equation 23 is to realise that the entries of the unitary that
correspond to 𝑋 completely determine the image of the unitary when the most
significant qubit (by our convention, that is the ancilla qubit) is |0⟩. Conversely,
after the measurement of the ancilla qubit, each row of 𝑋 corresponds to the op-
eration that was performed as a result of the state collapse. Hence, initialising the
ancilla qubit to ∣0𝐴⟩ as we considered in equation 22 and measuring the ancilla
qubits, we obtain that the collapsed output state must be one of

𝐃 ∣𝜓⟩ , 𝜎1(𝐃) ∣𝜓⟩ , … , 𝜎𝑘(𝐃) ∣𝜓⟩ , 𝐑 ∣𝜓⟩ .

The motivating idea is that we should be able to recover states that are permuta-
tions of 𝐃 by permutating the diagonal elements back in the correct order after
the computation. The probability of failure would then entirely depend on the re-
minder 𝐑; and the smaller the diagonal elements become, the smaller the entries
of 𝐑!

However, this does not work as hoped: the original diagonal transformation
is recovered from a permutated diagonal matrix if a basis change given by the
inverse permutation can be performed. Suppose that after the transformation the
state collapses into the 𝜎1(𝐃) ∣𝜓⟩ state. The only way we would recover the 𝐃 ∣𝜓⟩
state is with

𝐃 ∣𝜓⟩ = (𝜎−1
1 ∘ 𝜎1(𝐃) ∘ 𝜎1) ∣𝜓⟩ .

But this would require that we perform 𝜎1 before we even know in which state
the measurement will be collapsed – ie we cannot perform different permutations
depending on the output of the measurement.

The high failure probability is the main drawback of the amplitude encoding
strategy. Note however that in contrast to Fock-based approximation, or the qubit
encoding approximation that we will discuss next, arbitrary Gaussian operations
on amplitude encoded CV states are not only simple to express, they are also local
(up to the control operations on the indices): a single mode Gaussian operation
is encoded as a single qubit operation. In particular, operations on off-diagonal
covariance terms come for free in amplitude encoding. For a two mode state, for
instance, recall that the evolution of the covariance matrix is given by (eq. 16)

𝝈12 ↦ (𝐒 ⊕ 𝟙2) 𝝈12 (𝐒⊤ ⊕ 𝟙2) = [𝐒𝝈1𝐒⊤ 𝐒𝝐12
𝝐⊤

12𝐒⊤ 𝝈2
] .

Computing this classically, or using qubit encoding, requires a number of opera-
tions that scales linearly with the number of modes. Instead, in amplitude encod-
ing, the operation 𝐒 ⊕ 𝟙2 corresponds precisely to the controlled operation that is
performed. Thismeans further that “structure” from theGaussian transformation
will also be preserved in the simulation: for instance, sparsity will be preserved,
and diagonal symplectic matrices will also result in diagonal qubit transforma-
tions.
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3.2 Gaussian operations on digital quantum hardware

Qubit encoding

Encoding information in amplitudes is very sensitive to noise and requires quantum
circuits that provide high levels of accuracy. Together with the significant fail-
ure rate, this makes amplitude encoding challenging to implement in near-term
quantum devices.

We thus explore another approach that reduces Gaussian operations to clas-
sical circuits, which can usually be implemented with high accuracy. The idea
is to discretise the set of Gaussian functions and map them onto the orthonor-
mal computation basis: for instance, the single mode Gaussian state given by a

displacement 𝐝 = [𝑑1
𝑑2

] and the covariance matrix 𝝈 = [𝑎 𝑐
𝑐 𝑏] may be encoded as

∣𝜓⟩ = ∣bin(𝑎)bin(𝑏)bin(𝑐)bin(𝑑1)bin(𝑑2)⟩ ,

where bin(𝑥) is some discretised binary encoding of 𝑥.
Since Gaussian operations send Gaussian states onto Gaussian states, the im-

plementation of any such operation in a qubit circuit will be given by a classical
circuit: any computational basis element is sent onto another element of the com-
putational basis. The classical circuit for a symplectic transformation 𝑆 is precisely
given by the boolean circuit that performs the binary arithmetic that map 𝐝 ↦ 𝐒𝐝
and 𝝈 ↦ 𝐒𝝈𝐒⊤. Finding an optimal circuit that implements this operation is a task
of classical computer science, with the exception that quantum operations are re-
stricted to reversible gates. There are efficient circuits known for this task [38,
39].

The main drawback that arises from this approach has been hinted at a few
times. It is a consequence of equation 16 that descrbes the evolution of covariance
matrices under Gaussian operations: the cost of a single mode operation grows
linearly with the number of modes, and as such this implementation cannot scale
well in practice.

The superposition of product of Gaussians (SoPG) approximation presented
in 2.6 offers a solution to this problem: instead of discretising the entire Gaus-
sian state space, we only discretise Gaussians that are product states (i.e. not en-
tangled). We then represent entangled Gaussians as superpositions of product
Gaussians.

As shown by equation 17, this sets all off-diagonal terms of the covariance
matrix to zero, so that the computational effort for single mode operations is
constant. On the downside, however, this means that arbitrary Gaussian oper-
ations are no longer necessarily classical: entanglement-creating operations such
as beamsplitters map product states to entangled states, which must be approx-
imated by SoPG states.

In effect, finding an implementation for the two mode beamsplitter in the
SoPG approximation can be reduced to expressing rotations of Gaussian states as
SoPG states. Figure 9 gives an example of this: in that figure, the plot on the left
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would the rotated Gaussian that we wish to obtain from the Gaussian operation
– since this is not a SoPG state, this Gaussian would instead be approximated by
the SoPG state in the right plot.

In the SoPG approximation with 2 Gaussians presented in section 2.6, imple-
menting such a rotation comes down tomapping the displacement and covariance
matrix of oneGaussian to the parameters 𝛼, 𝛽, 𝛾 ∈ ℝ of the 2Gaussian SoPGpara-
metrisation given in equation 19. For simplicity, let us restrict ourselves to input
states with zero displacement and axes-aligned covariance matrices – the most
general case can then be obtained with additional rotations and displacements.
For a fixed rotation of angle 𝜃, a simple geometric argument shows that the vari-
ances 𝛼 and 𝛽 of the output state will scale linearly with the entries of the input
covariance matrix, while the displacement 𝛾 will scale with the square root – a
linear growth in the variance is in fact quadratic in the standard deviation. Since
we assumed that the covariance matrix of the input state is diagonal, we conclude
that the parameters 𝛼, 𝛽, 𝛾 ∈ ℝ only depend on the major/minor axis ratio of the
input covariance matrix

𝜎1
𝜎2

, where [𝜎1 0
0 𝜎2

] is the input covariance matrix.

Thus, all we need to implement a beamsplitter for the SoPG approximation
for fixed 𝜃 is to express explicitly the functional dependency of 𝛼, 𝛽 and 𝛾 on the
major/minor axis ratio. Note that forGaussian pure states, this corresponds in fact
to the amount of squeezing in the initial state. Finding a closed form algebraic
expression has proven challenging, thus we resorted to numerical tests that we
present in figure 10. These show the parameters 𝛼, 𝛽 and 𝛾 of the two product
Gaussian approximation defined in equation 19 of the image of an axes-aligned
initial Gaussian, as a function of the major/minor axis ratio.

It should be fairly straightforward in practice to implement a beamsplitter
based on these observed dependencies, even though further work in understand-
ing the mathematical relationship between these parameters would be helpful.
Depending on the accuracy achievable in the circuits, a first simple beamsplit-
ter might be achieved by implementing the crude linear approximation given in
orange in figure 10.

Measurements

Both for amplitude and qubit encoding, the issue of measurement has not been
addressed. For practical use, the ability of simulatingCVmeasurements is crucial.
This does not appear to be an easy task in either of the approximation strategies.

Two types of measurements can be differentiated: destructive measurements
and non-destructive measurements. Destructive measurements perform meas-
urements on the CV state and return the experiment outcome – the CV state,
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3.2 Gaussian operations on digital quantum hardware

Figure 10: Dependence of approximation error and model parameters of the 2
Gaussian SoPG approximation (eq. 19), as a function of the ma-
jor/minor axis ratio of the input state.

however, is destroyed and cannot be used for further computations. This is in
contrast with non-destructive measurements, which, as their name implies, allow
measurements on subsets of CVmodes, after which the remaining modes are still
available for further computations.

In theory, arbitrary quantum operations can be obtained from destructive
measurements at the cost of potentially high failure probability: measurements
to be performed are delayed until every other operation has been executed – in
the end, all measurements are performed simultaneoulsy and, in the case of post-
selection, sampled outcomes that do not correspond to the desired measurement
outcomes are discarded. In practice, however, this approach is highly undesirable,
as the induced failure probability is high. Furthermore, non-Gaussian CV meas-
urements such as photon-counting are a precious resource for non-Gaussianity:
non-Gaussian states can be obtained fromGaussian operations followed bymeas-
urements and post-selection.

In both encoding strategies, measurements are hard to simulate because the
non-orthogonal set of Gaussian states is mapped onto orthogonal elements of the
computational basis. Performing measurements on the qubits (e.g. in the com-
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putational basis) projects the measured state into orthogonal spaces, discarding
the interference terms that arise from non-orthogonal Gaussians. One avenue of
work that could solve this issue is implementing an operation mapping Gaussian
states, as they are represented in the respective strategies, onto a discretised set
of position eigenstates, encoded in the computational basis. This would in effect
construct a discretisedwave function of the CV state. Performing a computational
basis measurement would yield the outcome of a homodyne measurement of 𝑥-
quadrature. This would be a destructive measurement, as a Gaussian-to-position
eigenstates map is not invertible.

Implementing non-destructive Gaussian measurements would require im-
plementing the formula given in equation 11:

𝝈Π̂
𝐴 = 𝝈𝐴 − 𝝐𝐴𝐵(𝝈𝐵 + 𝚪Π̂

𝐵 )−1𝝐⊤
𝐴𝐵.

This could be achievable in the qubit encoding strategy, the biggest hurdle be-
ing the implementation of the matrix inverse operation. These two options seem
promising and more work should assess their viability.

For the time being, in the absence of any quantum operation for measure-
ment simulation, it is always possible to simulate measurements classically using
quantum state tomography [40]. The represented CV state can then be recon-
structed and classical computations can perform simulated measurements.

3.3 Non-Gaussian states in amplitude and qubit encoding

In the previous section, we have presented two strategies, amplitude and qubit
encoding, to simulate Gaussian states and operations on discrete quantum hard-
ware. Given the SoG approximation we have introduced in section 2.5, the Gaus-
sian capabilities can be extended to arbitrary computations by simulating super-
positions of Gaussians.

In qubit encoding, simulating superpositions comes for free: a single Gaus-
sian corresponds to a computational basis element, and so superpositions ofGaus-
sian states can bemapped to superpositions of computational basis elements. The
same qubit-encoded operations that act onGaussian stateswill linearly act on each
element of the superposition.

In the amplitude encoding, on the other hand, superpositions of Gaussian
states can be achieved by extending the mode-indexing qubits: a single 𝑛 mode
Gaussian state is given by one LSB qubit encoding the components of the cov-
ariance matrices and ⌈log(𝑛)⌉ qubits that index the modes. We can then express
superpositions of 2𝑘 Gaussian by adding 𝑘 indexing qubits:
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With this representation, amplitude-encoded operations also come for free: if 𝐒 is
to be applied on a single Gaussian, then the operation on 𝑘 superpositions is given
by 𝟙𝑘 ⊗ 𝐒, i.e. by applying 𝐒 to the subsystem of mode indices and covariance-
encoding qubit.

Thus, amplitude and qubit encoding can be used to simulate arbitrary oper-
ations. The main limitation is the difficulty of achieving accurate approximations
of the (normalised) cubic phase state, as was discussed in figures 7 and 8. Altern-
ative resources for non-Gaussianity which are more suited to numerical approx-
imations are needed to be able to simulate non-Gaussian states with greater ac-
curacy. In theory, any non-Gaussian state can be used to generate non-Gaussian
operations. The authors in [27] suggest for instance using Fock states as non-
Gaussianity resource, which have simple SoG approximations. However, the use
of such non-Gaussian operations is limited by our ability to decompose arbitrary
CV computations into these gates, so that more work is needed that combines the
search for non-Gaussian states that are numerically stable with new decomposi-
tion methods that can take advantage of those particular states.

3.4 Proof-of-concept implementations
We are completing this work with a short demonstration of CV simulation on
qubit devices in practice. We implemented both the qubit and amplitude encod-
ing strategy in Python using the Pennylane [41] and Strawberryfields [32] lib-
raries, which provide a comprehensive toolset for simulation of both digital and
continuous quantum computations.

The idea is to implement simulation backends for CV computations, which
themselves rely on a qubit simulation backend. Put in different words, the imple-
mentation provides a wrapper that, given a qubit simulation backend, returns a
backend for CV simulations. Once Pennylane and the plugin have been installed,
the CV simulation can be used like any other Pennylane CV device, entirely ab-
stracting away the qubit simulation:
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import pennylane as qml

# ampenc or qubitenc provide simulators
# with amplitude resp. qubit encoding
dev_str = "CVSimulation.ampenc"

# this example has 3 modes
dev = qml.device(dev_str , wires=3)

Both simulators provided rely on a qubit backend to perform the simulation; this
can be specified with the dev_qubit argument. Note that in contrast to the qubit
encoding, the amplitude encoding strategy is based onmixed states so that instead
of the default Pennylane qubit simulation device, a custom qubit_mixed device is
required, which is based on the Pennylane default qubit simulation device, with
the additional support for simulation of mixed state computations: it supports
mixed state preparation with the MixedStatePrep operation. Using another qubit
backend means the simulation can immediately be run on any available qubit
hardware.

Any CV computation can then be performed using the standard Pennylane
interface:

@qml.qnode(dev)
def circuit ():

# let variables mu , cov , r, phi and d be defined
qml.GaussianState(mu, cov , wires=[2]])
qml.TwoModeSqueezing(r, phi , wires=[1,2])
qml.Displacement(d, wires=[1]])

return qml.expval(qml.NumberOperator(2))

Note that only Gaussian measurements are supported.
This approach gives a flexible framework to develop further CV simulation

strategies by providing the abstraction of a CV simulation device. Whilst the cur-
rent implementation and our advances in the SoG ansatz are too limited in scope
to be of any public use, we hope that this framework can be used in more mature
future work. In this spirit of contribution to future work, we will highlight two
particular challenges that future CV simulations will have to face.

Controlling the classical overhead

One of the main challenges in the implementation of CV simulation strategies on
qubits is that there always remains a significant classical computational overhead
to preparing and executingCV simulations: even as the resulting qubit circuits are
efficient, expensive classical computations for circuit synthesis might well make it
impossible to scale the approach to large systems. This difficulty is perhaps most
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evident in the Fock-based and other basis projection representationswe presented
initially (section 3.1). In the absence of more structure, implementing CV oper-
ations in these basis must rely on explicit matrix representations, that must then
be decomposed into elementary qubit gates, which scales poorly, even if the final
qubit circuit is efficient.

SoG strategies have been designed precisely to make simple CV operations
simple to implement. We can thus hope that in the future arbitrary CV compu-
tations can be run on qubit hardware efficiently. For our proof-of-concept, we
performed some timed simulations on amplitude-encoded Gaussian operations
to compare the potential quantum speedup in a purely Gaussian setting. In fig-
ure 11, we see that only a small proportion (the leftmost bar) of overall computing
is dedicated to classical pre- and post-processing. The three Pauli measurements
correspond to quantum computations run on the classical quantum simulation
backend. These could be run on real quantum hardware and provide a signific-
ant speedup to the overall computation. The remaining operations are the clas-
sical overhead, taking up less than 5% of the overall execution time. An imple-
mentation of CV operations on genuine quantum hardware would thus provide
a significant speedup.

Note that the classical overhead of quantum circuit construction in our ex-
ample is by itself already bigger than the total computational effort required by
the Pennylane CV classical simulator given by the dashed line. This points to the
optimisation potential of our approach. More fundamentally, however, the qubit
simulation approach can be generalised to arbitrary CV operations, in stark con-
trast to the Gaussian classical simulator – while the Pennylane simulator might be
currently better optimised for Gaussian operations, non-Gaussian operations will
never be supported.

Qubit encoding: high approximation errors

Compared to amplitude encoding, qubit encoding is simpler to implement on
error-prone hardware with limited gate precision, given that much of the com-
putation can be achieved with classical circuits and limited entanglement. How-
ever, achieving the desired precision for the simulationmight require a significant
number of qubits: rotationmatrices, on the one hand,must be expressed by values
between −1 and 1, whilst displacement operations can take arbitrary values ≫ 1.
Hence, if we choose to discretise Gaussian covariance matrices and displacement
vectors up to a precision of 1

64 for values in the range [−3, 4], a single mode Gaus-
sian will require (2 components for displacement and 3 for upper triangle of co-
variance matrix)

5 ⋅ (log2 8 + log2 64) = 45 qubits.

Since this represents a single mode, this holds for both SoG approximations –
in which case the number of qubits will scale quadratically with the number of
modes – and for the SoPG approximation – in which case the number of qubits
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Figure 11: Mean execution time of CV simulation over 10 runs, split by task.

will grow linearly.
On top of this, we will require further ancillary qubits, as well as ancillary

modes if we wish to implement non-Gaussian operations – this is beyond what
we are able to simulate today, let alone run on quantum hardware. Using floating
points could reduce the number of qubits required, at the expense of more com-
plex quantum circuits, which also quickly reach the depth of circuit constraints.

For this proof-of-concept, we implemented a single mode Gaussian encoding
using 3 bits (of which 2 bits for decimal precision) for each of the three compon-
ents of the covariance matrix and 2 bits (of which 0 bits for decimal precision) for
the 2 displacement components. This corresponds to a precision of 1

4 on the inter-
val [0, 1] for the covariance components and a precision of 1 on the interval [0, 3]
for displacements. In our naive implementation based on general-purpose arith-
metic boolean circuits, this resulted in a total of 31 qubits, including the auxiliary
qubits.

The results of a rotation on a superposition of two Gaussians in the qubit
encoding is shown and compared to a Fock simulation in Figure 12. The actual
result, as can be computed by applying the rotation to each Gaussian separately, is
shown on the left. The middle shows the result from the classical Fock simulation
of the rotation. The right is the result obtained by the qubit encoded simulation
(3 bits for covariance components, 2 bits for displacement components).
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The considerable error after a single operationmakes it clear that more qubits
(and smarter implementations) are needed in order to make qubit encoding feas-
ible in practice. One promising approach that deserves further work is to base
qubit encoded operations on finite fields instead of approximated floating point
operations. There might be significant advantages to this approach when consid-
ering near term applications with significant limitations in the number of qubits.
First suggestions on this approachwill be elaborated in our next and final chapter,
in which we will discuss the possible next steps.

Figure 12: Approximations of the Wigner function of a rotated 2 Gaussian SoPG
state, as obtained analytically (left), using a Fock simulator (middle)
and using qubit encoding (right). The border effects that can be seen
are due to numerical approximations.
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4 Conclusion

This dissertation has presented some first steps towards the approximation of
continuous-variable quantum operations on discrete qubit devices. We have de-
tailed why existing approximation strategies for arbitrary CV operations imple-
mented on classical machines are not suited for qunatum implementations and
have suggested approaches based on superpositions of Gaussians as an alternat-
ive. These approaches are characterised by a native support for Gaussian states
and simple implementations of Gaussian CV operations. Previous research has
shownpromising signs that, togetherwith non-Gaussian state as offline resources,
the implementation of Gaussian operations should be sufficient for efficient uni-
versal simulation of CV operations.

We have presented two flavours of SoG approximations: amplitude encoding
and qubit encoding. The former provides a concise representation of CV states
using few qubits, but requires hardware that can executed circuits with high pre-
cision to guarantee accurate simulations. On the other hand, many operations
take a very simple form in qubit encoding, but precision must be guaranteed by
using a larger number of qubits.

For short tomedium term applications, the latter approach seemsmore likely
to succeed, given that noise is expected to remain one of the largest limitations of
quantum computing. A first priority for further research should thus be to aim to
mitigate the limited precision that can be achieved on small systems by exploring
smart state encodings and specialised implementations of Gaussian operations, as
opposed to the general-purpose arithmetic circuits that we implemented in this
work.

The calculus of finite fields may provide fertile ground precisely for such ap-
proaches. Instead of relying on floating point operations to compute state evolu-
tion, finite fields operations could be used as approximation of Gaussian opera-
tions. This would eliminate the approximation error due to the discretisation of
the Gaussian state space bymaking all arithmetic operations exact. Of course, ap-
proximation error will come instead from differences between the real and the fi-
nite fields calculus – nonetheless, this could provide reliable operations away from
the “edges” of the finite field using a limited number of qubits. Furthermore, in
contrast to the floating point approximation, in which arithmetic operations are
no longer unitary, all Gaussian operations would be unitary. Preliminary con-
siderations have even raised the prospect that in the finite fields framework the
basis change transformation from Gaussian states to position eigenstates might
be easy to implement, yielding the prospect of CV measurement simulation on
qubit hardware.

Beyond the issue of measurements and limited precision, there are many fur-
ther open questions that must be tackled in future work, such as engineering
non-Gaussian states that are both practical to approximate as SoG and that are
convenient to use in practice as a source of non-Gaussianity. Nonetheless, we
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are confident that this research has lain the ground work for the development of
CV simulation on qubit machines; it is in any case beyond doubt that a success-
ful implementation of continuous operations on qubit computers would enable
quantum applications for a wide range of computational problems and thus be
pivotal for quantum computing.
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