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Abstract

The quantum circuit language has become the de facto standard to specify quantum computations both
for algorithm design and for execution on hardware. However, as users start exploring more complex
computational problems, more abstract languages and primitives will become essential. Simultaneously,
hardware providers and compilers are keen to take advantage of architecture- and problem-specific optimisation
opportunities, which are hard to express in the circuit language.

New quantum primitives are necessary that provide both a useful abstraction to the user and optimisation
opportunities to the quantum compiler. We contribute to this effort in two ways. In the first part, we present
a systematic survey of previous work, providing an overview of the abstract quantum primitives that have
been proposed. From our conclusions, we develop in the second part a new additive model of quantum
computation that aims to address some of the issues of existing primitives. We show how this new model
provides new optimisation opportunities and yields new insight into quantum algorithm design.
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Introduction

The quantum circuit is an incredibly successful
abstraction that has been widely adopted in
quantum computing [1]. It can represent ar-
bitrary computations and can be readily com-
piled for execution on current hardware. How-
ever, as the number of available qubits in-
creases on devices and in applications, con-
structing circuits out of higher-level building
blocks becomes a necessity.

Without higher-level gate primitives and ab-
stractions, it will become steadily harder to
manage circuits with hundreds to thousands
of qubits. As the underlying Hilbert space
grows exponentially, the current popular varia-
tional approaches will also quickly start to face
scaling issues [2]. We are in a sense entering
a long NISQ tunnel, in which quantum cir-
cuits as we know them will become unwieldy
and our current classical compute-heavy de-
sign approaches will start to fail, but where
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we have not reached the fault tolerant scale yet
to make famous quantum algorithm proposals
such as Shor’s factoring [3] or Grover’s search
algorithm [4] viable.

Besides circuit design and convenience, there
are also circuit optimisation-driven demands
for new computing primitives. Limitations
in current circuit optimisation performance as
well as emerging hardware primitives and ar-
chitectures are making it increasingly hard to
make full use of hardware capabilities. Multi-
qubit operations as they exist on certain ion
trap devices [5, 6] are particularly hard to syn-
thesise out of lower-level gate primitives.

In this paper, we tackle the problem of find-
ing new abstractions for the design and opti-
misation of quantum circuits. To that end, this
paper is split in two parts. In the first part, we
present an extensive review of existing quan-
tum structures and abstractions. We aim to be
exhaustive by covering the litterature system-
atically by reviewing the over 200 combined
results obtained from searches on multiple sci-
entific databases.

From our obersvations and conclusions of
the survey, we then proceed in the second part
to proposing a new formulation of quantum
computation based on additive Hilbert spaces,
which we claim simplifies the mental model of
quantum computation. Our additive model of
quantum compuation is defined as a symmet-
ric monoidal category and its diagrammatic
description is developed.

Diagrammatic representations of quantum
processes have a rich history [7, 8] and have
heavily contributed to developping new un-
derstandings of quantum computation and
new quantum computation optimisation tech-
niques [9, 10]. We hope to present a new step
in this direction. We describe how our pro-
posed model could allow new compilation and
quantum optimisation approaches, and how it
could simplify quantum computation design.

We also discuss the limitations of the pro-
posed additive model and explore avenues to
mitigate these issues.

Part I

A Review of
higher-order
Quantum Primitives

1. Scope of the review

We aim to review past work that contributed to
building what we call higher-order NISQ prim-
itives: within the circuit model of quantum
computation, these constructs should allow the
user to think at a higher level of abstraction,
whilst giving the compiler more freedom for
optimisation given NISQ constraints. We de-
fine such primitives as any abstraction that
can be useful to define quantum computations,
with a few constraints, which we now detail.

Optimisation-relevant. The considered prim-
itives must leave scope for optimisation: in-
deed, abstract primitives typically come with
increased quantum cost. To remain useful in
real life, we restrict our attention to proposals
that have the potential for optimisations that
could be leveraged by a quantum compiler.

Hardware compatible. Any primitive must be
executable on realistic hardware, in so far as
it should be possible to compile such a primi-
tive at least in principle to the quantum circuit
model for execution on hardware.

Higher-order abstraction. Finally, we want
primitives that make thinking about quantum
computing easier – we exclude for instance any
gates that are introduces purely from hardware
motivations.

A word about optimisation: while optimi-
sation techniques are a key component of this
review, this is not a review on quantum opti-
misation. We are only interested in optimisa-
tions in so far as they might enable abstract
primitives to be used in computations on quan-
tum hardware. We will discuss optimisation
techniques when they are key to a particular
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Figure 1: Filters for the quantitative review paper search.

primitive, but will not be exhaustive in this
respect.

2. Paper selection

Our aim was to be as exhaustive and quan-
titative as possible. Our review includes all
papers returned by searches on the major peer-
reviewed paper databases as well as the arXiv.
There were well over 200 papers in total.

i. Selection process

We performed exhaustive searches on Scopus
(scopus.com), Web of Science (webofscience.
com), IEEE Xplore (ieeexplore.ieee.org) and
the arXiv (arxiv.org). We used the "advanced
search" feature available on most platform to
define an exact search query, designed to find
all papers that could be relevant to our review.
We have kept the scope of the search inten-
tionally broad so as to not miss any signifi-
cant paper. The query results are then filtered
manually in a later step to keep only relevant
results.

The search is structured as a conjuction of
four search groups that we number I - IV. Fig-
ure 1 illustrates how the search is broken down
into groups, where each group is assigned to
a specific search intent. Groups I - III are
whitelists that define the papers we are in-
terested in, and reflect the three criterion de-

scribed earlier, whereas group IV is a negative
blacklist, introduced to filter out the large num-
ber of hardware-focused papers present in the
raw results.

The whitelist filters accept search matches
on all available metadata on the platforms Web
of Science, IEEEXplore and arXiv. In Scopus
searches, we made use of the search feature
restricting queries to titles, abstract and key-
words, which should contain the most relevant
metadata.

To avoid discarding articles that mention
hardware implementations – for instance in
their abstract – whilst having a broader soft-
ware scope, the blacklist only applies to pa-
per titles. Finally, in the case of the arXiv, we
only considered publications from the years
2020 and 2021, in the assumption that older
relevant research would also be published in
peer-reviewed venues.

ii. Search results

We obtain a total of 265 hits when merging the
results of all platforms (Scopus: 103, WoS: 86,
IEEE: 49, arXiv: 27). We import all entries into
Jabref [11], automatically finding and removing
57 duplicates. We filter out the remaining pa-
pers by categorising the results manually into
one of 7 topics from their titles and abstracts.
We distinguish between papers deemed "on-
topic" (103 results) and results in other quan-
tum fields. Table 1 details the resulting statis-
tics. The majority of papers filtered out in
this stage were either duplicates (52 results) or
hardware-related (18 results). This is expected
as hardware papers historically form a large
portion of publications in the domain. This fact
gives us a certain confidence that our search
successfully targetted the desired scope.

We thus obtain a set of 103 papers giving us
an overview of proposed higher-order NISQ
primitives. The results are presented in detail
in the next section.
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Table 1: Filtering papers in search results.

Category Number of Papers

On topic 103
Hardware 18
Variational 9
Simulation 5
Chemistry 3
Routing 2
Duplicates 52
Other 16

3. Survey results

Table 2 provides a summary of the primitives
encountered in the 103 selected papers. Two
primitives stand out as being particularly domi-
nant in the set of papers: reversible circuits and
the matrix representation. We divide these pa-
pers into the different optimisation techniques
used with these primitives. These give an idea
of the potential optimisation techniques that
these primitives enable. We reiterate however
that the focus of this survey was not to make a
exhaustive list of either reversible circuits op-
timisation or matrix synthesis. For the case
of reversible circuits, a review was conducted
by Saeedi et al in [106]. Although the review
is aging quickly by now, it still gives a good
overview of the different optimisation strate-
gies in the field.

It is also interesting to note that many of
the reversible circuit-related papers are older,
with peak activity around 2013–2014. In con-
trast, the work on matrix representation has
accelerated in the last years and has become
an extremely active area of research. This
can be understood as matrix decomposition
techniques are especially promising in the low
qubit counts of the current NISQ area; with the
current stringent constraints in quantum hard-
ware, it makes sense to trade additional cheap
classical computational power for increased
quantum capabilities. Remarkable progress
has been made in the field, pushing the limit
of feasible near-optimal circuit decompositions
up to 6 qubits [68]. As qubit counts increase,

however, matrix decompositions become in-
creasingly unaffordable to perform classically.

We will discuss each of these two dominant
representations in their own subsection below.
A further 7 papers introduce novel primitives
which we will discuss in more detail in a dedi-
cated third subsection.

i. Reversible classical circuits

Reversible circuits correspond to the subset of
quantum computations that can be obtained
using classical logic [32]. In practice, this cor-
responds to computations given by matrices
with entries that are only zeros and ones. With
orthonormality, one can see that these matrices
correspond exactly to the symmetric group S2n

of all permutations of the basis vectors of the
2n-dimensional Hilbert state space.

Our focus is on the different representations
that reversible circuit primitives can be ex-
pressed in. These typically allow particular
optimisations to be applied. For a detailed re-
view of the optimisation techniques themselves,
however, we refer to the papers referenced in
table 2, as well as the above-mentioned survey
paper on the topic.

Permutations can be viewed equivalently as
the set of circuits generated by the CNT gate
set, made of the NOT gate (uncontrolled), the
CNOT gate (1-controlled) and the Toffoli (2-
controlled) gate. Note that both in the classical
and quantum case, any higher controlled n-
Toffoli can be decomposed to the CNT gate set
with standard decompositons [107], so that we
can typically consider n-Toffolis to be part of
the CNT gate set. In the special case of quan-
tum, the standard, 2-controlled, Toffoli can it-
self be decomposed in terms of CNOTs and
single unitary (non-classical) operations [108].

We can thus naturally split the reversible cir-
cuit synthesis problem in roughly two steps.
Permutations are first decomposed into circuits
in the generalised toffoli gate set, where arbi-
trarily controlled n-Toffolis are allowed. These
circuits are then further decomposed into a
universal set of quantum primitives, such as
single-qubit rotations and CNOTs. This step

4



A Review of higher-order Quantum Primitives r Term Paper Hilary 2021

Table 2: Summary of reviewed papers.

Category Number of Papers References

Reversible circuits
Templates and local optimisations 20 [12–31]
Search-based 13 [32–44]
ESOP-based 9 [45–53]
Swap-based 5 [54–58]
Decision Diagrams 3 [59–61]
Other approaches 4 [62–65]

Matrix representation
Search-based 9 [66–74]
Linear Algebra decompositions 8 [75–82]
Template and local optimisation 3 [83–85]

Other various primitives
Specialised Gate Decompositions 4 [86–90]
Ancilla management 3 [91–93]
Quantum Decision Diagram 1 [94]
Pauli gadgets 1 [95]
Quantum Karnaugh Map 1 [96]
Off topic 9 [97–105]

can be performed easily using the standard
known decompositions for the n-Toffolis.

The first step is a purely classical optimisa-
tion: both reversible circuits and the target gate
set can be expressed in classical logic. As a re-
sult of this, circuit synthesis in the n-Toffoli
gate set is among the most well-studied and
understood problems in quantum computing.
The second step, on the other hand is purely
quantum, as Toffolis can only be decomposed
into two-qubit operations in the presence of
the “square-root of NOT” gate, the quantum
V-gate. We first look at the first problem: the
classical problem of expressing reversible logic
in the CNT gate set.

The number of reversible circuits grows
exponentially and as such their description
typically takes exponential space. The most
straight-forward such representation is as a per-
mutation matrix or a truth table. Such represen-
tations are ideal for swap-based, also known in
the litterature as transformation-based, circuit
synthesis. Typically, the circuit implementing
the target permutation is gradually refined by
appending gates, typically chosen by a greedy
distance metric between the target permutation

and the circuit. We prefer the term swap-based
as it highlights how the reversible gates typi-
cally used (NOT, CNOT and n-Toffoli) act as
permutation swapping pairs of outputs – a
n-Toffoli gate on a n-qubit circuit will swap
exactly two outputs, whereas an uncontrolled
NOT gate on a single qubit will swap all out-
puts in pairs.

In one of the more recent approach, Susam
and colleagues pre-compute and table the opti-
mal circuit representations for every permuta-
tion that swaps two inputs and leave all other
fixed [57]. The number of such permutations
scales much more favourably compared to ear-
lier attempts at finding and tabling optimal ar-
bitrary permutations. These can then be used
as part of a standard selection sort to synthe-
sise arbitrary permutations. This allows for fast
circuit synthesis up to 20+ qubits in a fraction
of a second, with good performance.

Explicit truth table representations are also
ideal for search-based optimisation strategies
that perform searches in the circuit space to
find optimal or near-optimal circuits imple-
menting the desired reversible circuit. Using
hash tables to check for collisions quickly, all
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optimal 4-qubit permutations were generated
in [36].

There are also other representations that al-
though exponential in the worst case, provide
in many cases very succinct descriptions of re-
versible circuits. A popular approach has been
to express outputs of reversible circuits as bi-
nary arithmetic functions of the inputs, where
products aare given by ANDs and nd additions
by XORs. Such expressions can in particular be
rewritten as exclusive sums of product terms
(ESOP).

ESOP expressions can easily be translated
into a circuit: product terms can be obtained
with an n-Toffoli, and terms can be XORed
with CNots. ESOPs are not unique but can
often be expressed in canonical forms such as
positive polarity Reed-Müller codes (PPRM):
any ESOP over variables x1, . . . , xn can be ex-
pressed uniquely in its PPRM form as a1x1 ⊕
a2x1x2 ⊕ · · · ⊕ anx1 · · · xn, with a1, . . . , an ∈
{0, 1}. ESOP-based circuit synthesis strategies
then consist in finding an efficient order in
which to compute product terms, so that com-
putations and ancilla bits can be reused.

A third popular representation are Decision
Diagrams. Decision Diagrams are computa-
tional graphs that can be obtained by decom-
posing ESOPs recursively into a tree struc-
ture. Each node combines the expressions
of its children into a larger expression, with
leaf nodes being variables or literals. Whereas
ESOP-based circuit synthesis usually require
a fixed number of ancilla qubits and a consid-
erable circuit depth, the performance of deci-
sion diagram-based approaches is entirely com-
manded by the number of nodes in the tree.
In practice, such approaches tend to use more
ancillas but produce much shorter circuits. In
recent work, Stojković and her colleagues have
proposed a smart synthesis scheme based on
decision diagrams that significantly reduced
the number of ancillas required compared to
previous work [61]. This makes decision di-
agrams one of the most promising avenue of
work when there is a circuit-depth versus an-
cilla use trade-off to be made.

The second half – the non-classical half –

of the reversible circuit synthesis problem, in
which circuits in the CNT gate set must be fur-
ther decomposed into a quantum gate set, is
less well-studied. Most of the work has focused
on expressing simplification rules for chains of
Toffoli gates [21–28]. Mohammadi and Eshghi
introduced 4-valued truth tables to perform cir-
cuit searches over a non-classical gate set, using
controlled-V gates [44]. Soeken et al. as well as
Rahman et al. incorporated controlled-V gates
into template matching strategies and showed
significant improvements in synthesised gate
count [29, 30]. Another interesting approach is
to decompose Toffolis only up to relative phase,
introducing a lot of freedom in the quantum de-
compositions that are required [109], compared
to the traditional classical decompositions.

Another feature of reversible circuit synthe-
sis that is particularly relevant in the quan-
tum case is the ancilla vs circuit depth trade-
off that we touched on in Decision Diagrams.
Different Toffoli decompositions with more or
less ancillas are known to make use of this
trade-off [110]. T-depth optimisation for re-
versible circuits using ancillas has also been
presented in [111]. Finally, uncompute optimi-
sation, very relevant to Toffoli decompositions
and reversible circuits in general has been pro-
posed in [93].

ii. Matrix decomposition

Unsurprisingly, the other popular primitive is
the unitary matrix representation, which de-
scribes the quantum computation by its uni-
tary evolution. Unlike other representations,
it is both universal – it can represent arbitrary
computations – and unique: two computations
are identical if and only if their matrices are
equal. This makes it invaluable as a resource
in circuit optimisation: unlike local circuit opti-
misation approaches whose success might vary
depending on the circuit representation and
the local optimisation landscape [73], circuits
that are resynthesised from unitaries will al-
ways be unique.

However, unitary decomposition (as well as
unitary computation itself) is challenging and
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scales very poorly. Finding any decomposition
has exponential cost in the average case and
finding efficient decompositions is even harder.

Using results from linear algebra, one can
find general unitary decomposition schemes
that will break down arbitrary unitaries into
product of unitaries expressible in the quan-
tum circuit model [78]. Approaches using the
Cosine-Sine decomposition [76], the Quantum
Shanon decomposition [79] and the QR de-
composition [80] have been proposed. While
asymptotically efficient for almost all unitaries,
such strategies typically generate fixed-sized
circuits and fail to synthesise short circuits even
when such circuits exist. This makes this ap-
proach inadequate for circuit resynthesis opti-
misation use cases, as well as for circuits be-
yond three qubits.

To find optimal or near-optimal circuits,
search-based approaches have been developed.
Exhaustive brute force search in circuit space
has been performed in [66], finding T-depth op-
timal circuits for up to 3 qubits. More recently,
more elaborate search-based approaches with
pruning heuristics such as the A* algorithm
have been successfully applied to this prob-
lem [67–69].

An alternative approach in [72] is to fix a cir-
cuit template and optimise continuous param-
eters to approximate the target unitary. This
makes it possible to synthesise circuits with
device constraints in mind and to trade off
decomposition accuracy for shallower circuit
depth and lower noise. Using regularisers, this
approach can also optimise for sparse results
that reduce gate count, especially when fol-
lowed up by local optimisations.

Loke et al. have also proposed an approach
merging reversible circuit and unitary matrix
synthesis in [74]. They show that searching for
decompositions U = PU′Q, where P and Q
are reversible circuits can yield shorter circuits
when using the Cosine-Sine decomposition for
the unitaries U and U′.

Such optimised unitary synthesis ap-
proaches yield efficient circuits but scale poorly
beyond a handful of qubits. They can still be
used on larger problems, however, by partition-

ing large circuits into smaller local subcircuits
that can be resynthesised individually, yielding
some of the best scalable circuit optimisation
techniques developed to date [73].

iii. Other approaches

Beyond the well-established primitives dis-
cussed earlier, a series of other approaches have
been presented.

Abdollahi and Pedram introduced Quantum
Decision Diagrams (QDD) as an alternative
primitive to quantum circuits [94]. QDDs are
rooted directed acyclic graphs where vertices
are annoted with a qubit and edges with quan-
tum operations. The graph has a single termi-
nal vertex, which has no outgoing edge. Every
other vertex has exactly two outgoing edges, a
0-edge and a 1-edge. An input quantum state
in the computational basis is then mapped to
an output state by traversing the graph from
the root to its terminal leaf, at each vertex fol-
lowing the 0 or 1-edge depending on the state
of the annotated qubit. The authors present
an efficient circuit synthesis algorithm from a
QDD input, which for instance can be used
to synthesise reversible circuits into quantum
gates without first relying on classical decom-
positions.

An example adapted from the paper (Figure
7 in [94]), a QDD for a Toffoli gate, is repro-
duced here.

Starting at vertex a, the graph is traversed
downward following the thick edge if the qubit
associated with the vertex is set, or the dashed
edge otherwise. Thick edges have an anno-
tated quantum operation (in this case, a X or I
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Pauli operation) that must be composed when
traversed and applied to the |0〉 state of the
terminal square vertex.

The paper gives a few more examples that
can be represented as QDDs and more general
computations beyond simple reversible circuits
should be expressible as QDDs using other
gates. However, no proof of universality is
provided, leaving the general question open.

Another approach was presented in [96],
where the Karnaugh Map notation from classi-
cal logic is adapted to the quantum case. The
authors show that by trying to extend so-called
bubbles in much the same way as in the classi-
cal case, one can obtain noteable improvements
in circuit gate count. This approach also needs
to be described and benchmarked more thor-
oughly in order to properly assess its potential.

Finally, Pauli gadgets are another set of quan-
tum primitives that have been shown to be use-
ful for quantum computation description and
circuit simplification [95]. Pauli gadgets are
given by unitaries of the form exp(−iPα/2),
where P is the tensor product of Pauli matri-
ces I, X, Y, Z. This primitive appears naturally
in the simulation of Hamiltonian evolution in
quantum chemistry application and specialised
circuit optimisation techniques were developed
for such operations [95].

4. Discussion

This review has highlighted how most ap-
proaches have clustered around reversible cir-
cuits and the unitary matrix representation. Re-
search work into optimisations in the reversible
circuit framework has been especially fruitful
over a long period of time. More recently, as
classical computation became ever cheaper and
the focus shifted towards obtaining maximal
performance on simple quantum computations,
more attention was given to search-based op-
timal or near-optimal synthesis of arbitrary
quantum computations using the unitary rep-
resentation.

Optimal matrix synthesis strategies seem
parrticularly amenable to localised circuit opti-
misation through subcircuit resynthesis. How-

ever, especially as quantum systems scale, it
will not solve the circuit design challenge, as it
does not provide any higher-order abstraction
beyond the limits of matrix synthesis capabili-
ties, currently at around 5-6 qubits. Given the
sizes of the unitaries involved, it also quickly
becomes unmanageable as a user interface,
arguably even before the computer is over-
whelmed.

In principle, reversible circuit suffer from
a similar exponential blow-up in size. How-
ever, some of the proposals reviewed can scale
much better than unitaries. Decision Diagrams
and ESOP-based representations scale with the
number of terms in the expressions considered
– in practice, most reversible circuits considered
are polynomially-sized expressions that can
be synthesised efficiently for large numbers of
qubits. Changing from one canonical repre-
sentation to another can be quite expensive,
however.

As quantum computers scale beyond the cur-
rent scales, reversible circuits will gain in rel-
evance again – in the long term, we expect
such reversible circuits to make up significant
portions of fault tolerant algorithms. We be-
lieve that there is significant scope for further
research in the area. Most research in the area
has aged significantly: new research working
with actual hardware models in mind is needed
to develop efficient solutions specifically made
for real quantum hardware.

An approach would be to decompose re-
versible circuits to quantum gates directly, op-
timising for quantum gate depth instead of
restricting considerations to the classical frame-
work. In that aim, relative phases may prove
a fruitful avenue of work. Maslov showed
that the circuit depth of reversible circuits can
be significantly reduced if relative phase dif-
ferences are allowed: toffoli gates can be im-
plemented in just 3 CNOT gates instead of
6 CNOTs for the exact decomposition [109].
Whilst the use cases of such a phase shifted tof-
foli gate are restricted in general, phase shifts
play nicely with reversible circuits, as they can
be commuted through such permutations, cre-
ating new optimisation opportunities.
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In that respect, the propopsed Qantum De-
cision Diagram framework proposed in [94]
stands out as it can represent phase shifts in a
natural way, as annotations on the graph edges.
It might be that relative phase optimisations
will be more natural to express in this language.
Similarly, Quantum Karnaugh maps [96] also
seem to encode relative phases in a more intu-
itive way than circuits.

Another area of potential within reversible
circuits is the use and trade off of ancilla qubits
for circuit depth. Multiple proposals have es-
tablished that ancilla qubits can be used for
reversible circuit synthesis [61, 93]. These are
promising first steps towards an optimised an-
cilla management system that can make use
of free qubits on spare qubits of the hardware.
Further work could explore exactly this trade-
off between additional ancillas and reduced
circuit depth.

Part II

Quantum circuits in
additive Hilbert
space
In the first part, we reviewed the existing prim-
itives for the design of quantum computations.
We established that proposals so far have clus-
tered around a few approaches that as quan-
tum hardware matures, will face significant
limitations. New hardware architectures and
increasingly complex application needs will
demand better and faster optimisation capabil-
ities, as well as more powerful abstractions for
algorithm design.

In this second part of the paper, we would
like to propose a new diagrammatic model for
quantum computation that offers a different
perspective on circuit optimisation and algo-
rithm design, while drawing on the extensive
research in optimisation for reversible circuit
and unitary synthesis. We call such diagrams
Additive Circuits (AC). The key idea is to re-

place the multiplicative monoidal product in
the familiar circuit model – the tensor product –
with an additive structure. For this reason and
to avoid confusion, we will from now on refer
to the standard circuit model as the multiplica-
tive model of quantum computation.

We contend that ACs are both valuable as a
educational and research tool to frame quan-
tum computation in a novel and intuitive way,
as it may be to express new circuit optimisation
techniques used to improve quantum compu-
tation execution on hardware. We will give
elements indicating that this model is suitable
for NISQ machines and quantum compiler op-
timisations, as additive circuits can readily be
converted to their multiplicative equivalent. In
fact, by being less tied to hardware considera-
tions than multiplicative circuits, the additive
model opens the door for entirely new optimi-
sation strategies. How this additional freedom
can be used for compiler optimisations will be
discussed in more details towards the end of
this paper in section 7.

The ZX-calculus [9] illustrates perfectly how
such alternative models both forge a better un-
derstanding of the underlying quantum theory
and yield new avenues for circuit optimisa-
tion. It reformulates unique and unintuitive
features of quantum computation as simple
visual operations in a graphical language [7].
This educational resource has in turn allowed
researchers to propose new ground-breaking
circuit optimisation strategies [10, 112].

We start by discussing the assumptions and
disadvantages of the multiplicative model in
section 5. We then proceed to introducing ad-
ditive circuits in section 6, its generators and
its associated graphical language. The remain-
ing sections discuss future avenues of work,
in particular new compiler and optimisation
techniques (section 7), approaches to mitigate
scaling problems of the additive representa-
tion (section 8) and conclude with a discussion
(section 9).
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5. Disadvantages of

multiplicative circuits

The multiplicative circuit model has estab-
lished itself as by far the most popular rep-
resentation for quantum computations. In its
simplest definition, the circuit model is an el-
egant abstract description of the intricate ex-
perimental and physical details involved in the
hardware implementation of different quan-
tum computing architecture: qubits in the cir-
cuits correspond to physical two-dimensional
state spaces, while gates represent Hamiltonian
evolutions that these systems can be sujected
to. The proximity to hardware primitives also
makes the multiplicative language convenient
to formulate hardware properties such as archi-
tecture constraints, gate sets and noise models.

However, there are also disadvantages in-
herent with using exclusively a multiplicative
model, which we elaborate on in the rest of
this section.

i. Exponential state space

Quantum theory postulates that the combined
state space of multiple qubits together is given
by the tensor product of the individual spaces.
As a consequence, the dimension of the state
space associated to a qubit system grows expo-
nentially with the number of qubits. This also
means that the computational space of a quan-
tum circuit must grow exponentially with the
size of the circuit. While this is a necessity for
any scalable representation of quantum compu-
tations, that has drawbacks when formulating
problems of finite size.

First of all, circuits might not be an ideal rep-
resentation for computations that try to cover
the state space densely. This could for ex-
ample be relevant for NISQ-era approaches
that are not as concerned with scalability as
they are with using the quantum resources effi-
ciently [113]. In the case of variational ansaetze,
this is typically mitigated by increasing circuit
depth as the number of qubits is increased;
there is however very little theoretical under-
standing of how such high dimensional spaces

are parametrised by variational circuits, and in-
deed in practice such approaches have proven
hard to optimise successfully [2]. These is-
sues are also of interest more broadly beyond
small scale variational NISQ ansaetze in prob-
lems such as circuit encoding of classical data,
where we expect to benefit from efficient en-
coding schemes [114].

Another limitation of the exponentially sized
state space is in the representation and pro-
cessing of data that might not live in a vector
space with dimensionality that is a power of
2. Transformations in such spaces cannot be
represented in the circuit framework and re-
quire additional padding to the next power of
2 before they can be decomposed into a circuit.
On top of severely obfuscating user code, dif-
ferent padding strategies will require different
information encodings and might lead to more
or less efficient circuit decompositions, making
this problem non-trivial.

ii. Circuit-unitary mismatch

As we have started to see in the previous para-
graphs, circuits have an awkward relationship
with the unitary matrix representation of quan-
tum computation.

To see why the circuit model doesn’t fit ar-
bitrary use cases particularly well, it serves
to have a look at such unitary matrix repre-
sentations of quantum circuits. Figure 2 gives
an example of a simple circuit and its corre-
sponding unitary matrix. How long would it
take you to find out that these are merely lo-
cal operations – and that in fact the first qubit
remains unchanged? The single parameter θ
– local in the circuit model – becomes highly
non-local in the unitary representation. As we
compose such beautiful unitaries together and
the number of non-local parameters increases,
the associated optimisation problem becomes
quickly challenging.

On top of this, adding an idle qubit will
double the number of non-zero entries and
quadruple the size of the matrix. You can see
why even an optimiser might start to struggle
once there are a few qubits and several such
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Figure 2: This unitary looks bananas.

matrices multiplied together – keeping in mind
that such an optimiser in a NISQ context will
usually only get to see obscure noisy measure-
ment statistics, rather than the unitary.

For computational problems that have a nat-
ural map to quantum structures and quantum
computation, this might not be an issue as
there might be an evident interpretation of cir-
cuit primitives in the application domain. How-
ever, in many cases, we can only interpret cir-
cuits by the abstract transformation they imple-
ment overall, rather than the individual gates.
Most variational approaches proposed [115,
116] fall in this category, as they optimise pa-
rameters based on general templates that can-
not be application motivated. In such cases
quantum circuits are not helpful to humans
nor machines to understand what the compu-
tation is achieving. This might also make it dif-
ficult to express other familiar computational
problems as quantum problems.

iii. Limited scope for optimisations

As devices have limited coherence times, quan-
tum compilers play a crucial role in rewriting
quantum computations to optimise execution
performance. This will arguably become even
more relevant over the course of the next few
years as first quantum applications become
viable and smart compilation will make the
difference between a feasible and unfeasible
circuit. Writing quantum operations in the low-
level circuit model has for a long time been the
only option to obtain quantum programmes
executable on actual hardware1. In the future,
however, the exact feature of the circuit model
that has made it so useful, its closeness to the
hardware, limits the optimisation potential of
the compiler in several ways.

While the typical approach performs so-
called "peephole" optimisations locally on the
circuit to reduce computational complexity, the
scope for improvements in this area are limited.

1Very rarely, one might want to define an operation
directly by its unitary, which thanks to recent work and
the ever-growing classical compute power available has
become feasible up to 5-6 qubits.
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As work on unitary synthesis has shown [68,
73], we can only hope to approach optimal
solutions if we are able to perform non-local
transformations to the circuit. For that, the cir-
cuit representation is actually a hindrance more
than a useful tool: powerful non-local optimisa-
tion techniques such as unitary resynthesis [68],
Pauli gadget synthesis [117] or depth reduction
using ancilla qubits [61] cannot be performed
until the circuit has been resynthesised into a
non-local representation, in the hope of uncov-
ering computational structure invisible in the
circuit representation.

Beyond circuit optimisation, a core compiler
function is to resolve hardware constraints so
that a given quantum program can be executed,
within the limitations of the device. The chal-
lenges of resynthesising quantum circuits into
more helpful non-local descriptions also mean
that we may struggle to compile for future
hardware architectures. Most devices available
today have broadly equivalent requirements,
especially with regards to the available gate
set [118–121]. This has meant that quantum
compilers have been able to remap any quan-
tum circuit between devices’ native gate sets
with minimal cost.

However, as new quantum technologies ma-
ture and qubit control improves, it is natural
to expect that more specialised hardware prim-
itives will become available. It might then be-
come increasingly difficult to rebase to and
make full use of these advanced gate sets from
a circuit representation. As an example, ion
trap architectures are typically able to perform
entangling operations between three or more
qubits at once [122–124]. Synthesising such op-
erations from typcial circuit-level primitives is
challenging. Even if these new gate types are
accepted in the circuit input to the compiler,
the burden would then fall on the user to make
use of these unintuitive primitives and retarget-
ting to other architectures would be impossible.
The same problems would also arise if new ar-
chitectures embraced higher-dimensional com-
putational units, e.g. qutrits or qudits: our
compilers would not be able to compile qubit
circuits to such systems.

Finally, rigid quantum circuit descriptions
disallow underspecified computations, which
can be extremely valuable for compiler opti-
misations. In cases where outputs might be
discarded or intermediate quantum computa-
tions are uncomputed later on, the user ought
to be able to leave a level of flexibility to the
compiler, instead of having to find themselves a
unitary representation of the problem at hand.

6. Additive Circuits

We propose in this section a new additive
model of quantum computation that addresses
some of the issues discussed in the previous
section. Like the ZX calculus [8, 9] and to a cer-
tain extent the standard circuit model itself, our
new graphical language is rooted in the theory
of symmetric monoidal categories, and more
specifically PROPs. PROPs have a very rich
and well-studied diagrammatic representation
that we can leverage in our new model [125].

Crucially, however, we replace the tensor
product structure that the ZX calculus and
the multiplicative circuit model have inherited
from the quantum postulates with an additive
structure given by the direct sum of vector
spaces. This makes our model a close parent
to earlier work in graphical representations of
boolean circuits and signal flow graphs [126–
128]. The main difference is that we con-
sider generators for the underlying symmet-
rical monoidal theory that are unitary linear
operations. As far as we know, this has not
been explored before.

Concretely, we represent each component of
the state vector in the quantum Hilbert space as
its own entity, and observe its transformation
across time. For instance, a 3-qubit system
would be viewed as 23 = 8 individual entities,
which we will call wires. Instead of considering
the PROP object A =

⊗3
i=1 Q, where Q = C2

is the state space of a single qubit, we view it
as the object Ã =

⊕8
i=1 W, where W = C is the

one dimensional vector space of a single wire,
an amplitude in the state vector.
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i. Diagrammatic representation

We use the well-developed diagrammatic lan-
guage for PROPs [125] to represent additive
circuits. The object Ã =

⊕8
i=1 L is represented

by 8 horizontal wires. Boxes are then appended
on selected wires from left to right to represent
function application and composition.

Unlike in circuits, wires are free to cross
eachother as they like to connect to different
gates. For that we introduce the wire swap
operation τ

that corresponds to the permutation matrix
that swaps two of its vector components. Ap-
plying a swap twice is again the identity – this
is the symmetry of the monoidal product.

Composing such swaps on different wires, we
can express arbitrary permutations. The pre-
cise swap order is immaterial within a given
permutation; this allows us to write crossing
wires in our diagrams without ambiguity:

By convention, what does matter is the order of
the inputs and outputs in the additive circuit,
as they define the mapping to the computa-
tional basis.

Note that such permutations correspond ex-
actly to the reversible classical circuits that
were studied in depth in the first part of this
paper. CNOTs, Toffolis and NOT gates are all
expressed by such permutations.

ii. Generators

We present a set of generators that make the
additive model universal for quantum comput-
ing.

Phase shift

The phase shift acts on a single wire to add
a phase to it: |ψ〉 → eiα |ψ〉. Note that quan-
tum states cannot be distinguished up to global
phase; the point of the phase shift is to intro-
duce a phase difference relative to the other
wires. We represent it in a diagram with a
circle parametrised by α.

As a unitary, a phase shifter on a wire within
a larger additive circuit corresponds to a diag-
onal operation, with ones everywhere except
on the target wire. For instance when acting
on a system with two wires, which would be
written as a single qubit in the multiplicative
model, a phase shift corresponds to a Rz rota-
tion up to global phase:

Figure 3 shows the same phase shift within a
larger systems, in which it can be implemented
as a phase gate controlled by the other qubits.
This can alternatively be decomposed into a
cascade of controlled Rz rotations, as can be
seen in the figure.

Beam splitter

The second unitary generator acts on two wires,
similar to the familiar beam splitter in optics:
an input on the first wire such as (1 0)> is
transformed into (t

√
1− t2)>. The beam split-

ter can be parametrised with θ = acos t and
expressed as a Ry(θ) rotation:

Ry(θ) = exp
(
−iY

θ

2

)
=

 cos
(

θ
2

)
sin
(

θ
2

)
− sin

(
θ
2

)
cos
(

θ
2

) ,
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Figure 3: A single phase shift (left) translated as a multiplicative circuit (right).

where Y =

[
0 1
1 0

]
is one of the Pauli matrices.

When the two wires that the beam splitter
acts on are mapped to computational basis
states that only differ in one qubit, i.e. their
bitstrings have Hamming distance 1, the beam
splitter can be implemented with a controlled
Ry(θ) rotation in much the same way as the
phase shift was implemented with a controlled
phase gate. Otherwise, we can always apply a
permutation first, implemented by a reversible
classical circuit, such that the Hamming dis-
tance between the bitstrings is reduced to 1.

The phase shift and the beam splitter can
be understood very intuitively: the first modu-
lates the phase of a circuit wire, whilst the sec-
ond modulates amplitude. While phase shifts
can be performed on a single wire, the ampli-
tude changes must use two different wires to
preserve unitarity: we effectively reduce or in-
crease amplitudes by mixing wires of different
amplitudes.

iii. A universal model for quantum
computation

Using the definitions of the phase shift and
beam splitter, any Rz or Ry rotation in the mul-
tiplicative circuit model can be expressed in
the additive model. Assume we would like to
apply a rotation on qubit i, on a circuit with n
qubits. Up to global phase, a Z rotation of an-
gle θ can be expressed by adding θ-phase shifts
to every other wire, that is to all wires that are
mapped to a bitstring |a1 . . . ai−11ai+1 . . . an〉
for some a1, . . . , ai−1, ai+1, . . . , an ∈ {0, 1}. Sim-
ilarly, a Y rotation is obtained with beam split-
ters between bitstrings |a1 . . . ai−10ai+1 . . . an〉

and |a1 . . . ai−11ai+1 . . . an〉, for any such
a1, . . . , ai−1, ai+1, . . . , an ∈ {0, 1}. For instance
in the two qubit case, an Rz(θ) gate is obtained
as follows (up to global phase):

Given that CNOTs are a reversible classical
circuit and can be obtained with wire swaps in
the additive model, we can thus express any cir-
cuit in the universal gate set {Ry, Rz, CNOT}
as an additive circuit. Figure 4 shows a trans-
lation from the standard circuit model to the
additive circuit for the exp (−iZZθ/2) phase
gadget.

iv. Illustrating phase and amplitude

We have described in the previous paragraphs
how circuits of the additive model can be writ-
ten as diagrams, using wires for each dimen-
sion of the underlying vector space and boxes
for their unitary transformations.

Such a diagram is an alternative representa-
tion for the unitary U of the computation. In
the case of circuits that are run on machines,
however, only the image U |0〉 of the zero state
is actually of interest. If we think in term of
simulation of quantum devices, what we are
interested in are the state vectors that evolve
throughout the circuit starting from |0〉, rather
than the full unitary. In this case, we can over-
lay additional information on top of additive
circuits to display the state vector information.

We choose to represent the phase of each
vector component with a colour gradient and

14



Quantum circuits in additive Hilbert space r Term Paper Hilary 2021

Figure 4: A phase gadget implementing the exp (−iθ/2ZZ) gate as an additive circuit.

the amplitude with transparency. A phase shift
can for example be pictured as follows

The colour wheel on top of the circuits repre-
sent the colour gradient from 0 phase to 2π.

Amplitude changes on the other hand can be
observed when using beam splitters. For two
wires of same phase but different amplitudes,
we obtain

for an arbitrary mixing parameter θ. Note that
here we drew the case where Bcosθ − Asinθ <
0, so that the second output incurs a phase flip,
and hence a change in colour. For the special
case were the second input has zero amplitude
and the angle parameter θ = π/2 is fixed

In this case, the beam splitter splits the first
input wire into two wires of equal amplitude.

Building on fig. 4, an additive circuit starting
in the |0〉 state might then look like the example
in fig. 5.

7. Compiling Additive Circuits

Additive circuits will only ever be as useful
as our ability to convert them into efficient
circuits for execution on quantum devices. Ex-
citingly, besides being very legible, additive
circuits open a lot of doors for quantum opti-
misation.

i. Routing

The first opportunities for optimisation come
from the difference in locality. In the multi-
plicative model operations are tied to logical
qubits and therefore, up to placement, to hard-
ware qubits on NISQ devices. In contrast, in
the case of additive circuits, we can reroute
every single state vector component to max-
imise performance given locality properties of
the circuit and architecture constraints of the
device.

Routing in the additive model also has the
potential of being cheaper given its finer gran-
uality than circuits: most traditional rout-
ing solutions involve exchanging qubits using
swap gates that cost three CNOTs, whereas
routing in the additive model can make use
of reversible circuits composed of just single
CNOTs. Finally, this finer graining will also
mean that additive routing could make use of
additional available ancillas in a way that is
not possible in the multiplicative model, by
mapping some amplitudes of the state vector
to unused qubits.
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Figure 5: A circuit (left) with its representation in the additive model, where paths have been coloured to illustrate the
state vector (right).

ii. Reversible circuits

Reversible circuits are one of the few classes of
circuits that we are actually able to optimise
well (see first part of the paper). Additive cir-
cuits give us the possibility to leverage such
optimisations both by providing first class sup-
port for them in circuit design and construction
as well as for internal use in the compiler, for
instance for routing and more general strate-
gies that might benefit from rearranging the
vector components. Reversible circuits are also
key to scaling quantum computations beyond
small hand optimised circuits, as they form the
core of most oracle-based and other large scale
proposals for quantum algorithms [4, 129].

Not only are reversible circuits native in the
additive model: they are totally implicit, as
wires can be uncrossed and swapped without
any change in semantics, as long as the input
and output ordering are fixed. Thus in this
model, CNOTs become mere wiring details
that can be abstracted away and resynthesised
only when and where necessary.

iii. Naturality of reversible circuits

Tying in with the previous point, wire swaps
in the additive model are natural in the cate-
gorical sense: that is, one can push through all
phase shifts and beam splitters past swaps so
that, it would be possible to totally unentangle
all wires, leaving only a layer of phase shits
and beam splitters first, followed by a layer of
wire permutations.

Furthermore, relative phase differences ob-
tained by phase shifts are only relevant when

beam splitters with another wire are per-
formed; in all other cases, they can either be
merged in with other phase shifts, pushed
through permutations or discarded before mea-
surements. This means that one optimisation
strategy could involve removing any phase
shifts from an additive circuit, keeping anno-
tations of relative phase differences and rein-
serting phase shifts on one of the wires before
beam splitters to restore the necessary phase
differences. This also opens the door to further
optimisations in reversible circuit synthesis, by
synthesising such circuits up to relative phase.
This could lead to significant gains in circuit
depth, see [109] and the review discussion in
section 4.

8. Scaling of the additive model

By far the biggest disadvantage that we have to
contend with in this model of computation, by
its very nature, is its exponential scaling. We
try to address this in this section by discussing
possible mitigation strategies.

The key will be to quickly build abstractions
on top of basic generators, so that we can bun-
dle large numbers of wires together. We could
imagine stacking wires together and applying
phase shifts and beam splitters, or more ad-
vanced primitives, in batches to such stacks. A
single rotation in the multiplicative level would
then correspond to some permutation of the
wires in the additive model, followed by a sin-
gle phase shift (or beam splitter) on the stacked
wires.

The compositionality and scalability of our
approach can be improved even further by
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considering the multiplicative and additive
monoidal products in a combined model. We
would only use the additive model within the
mulitplicative framework on subcircuits when
useful, either for circuit design or for optimi-
sation purposes. The interplay between both,
given by distributivity laws, is very well un-
derstood at a categorical level [130] and could
form the bedrock of the theory. In practice, we
would select subcircuits in the multiplicative
model and “explode” its n qubits into 2n wires,
which could then be optimised, rerouted or
resynthesised as necessary.

In this way we can maintain the scalability
of design, routing and optimisation procedures
while still benefiting from the unique opportu-
nities that the additive model can offer.

9. Discussion and future work

In this paper, we have introduced an addi-
tive model for quantum computation that ad-
dresses some of the conclusions that we drew
from the litterature review in the first part. It
provides a more abstract representation that
will allow the user to think at a higher level
of abstraction and could enable more powerful
novel optimisation techniques. It makes use
of the wealth of optimisation techniques devel-
oped for reversible circuits, and relative phase
synthesis, as well as new optimisations such as
simpler use of ancillas and more flexible rout-
ing. Finally, we are convinced that the additive
model is an excellent tool for educational pur-
poses, as the generators and overall theory are
very simple to understand.

It highlights the exponential scaling of the
computational state space instead of leaving it
implicit as in the multiplicative model. This
comes at a cost in its scaling performance, but
could make it invaluable to visualise the power
of quantum computation; it can for instance
make the reason clear why large variational
quantum circuit optimisation might fail. The
exponential scaling can further be mitigated
with the strategies detailed in section 8.

Unfortunately, we had to leave some moti-
vations and descriptions at a very high level.

We will elaborate in future work on some of
the points discussed and tackle the issues one
by one with more technical and thorough stud-
ies. Beyond the key scaling considerations that
we have already addressed, there are several
other open questions that need further work.
First and foremost, efficient circuit synthesis
approaches are needed to synthesise hardware-
executable circuits out of additive representa-
tions. The naive approach – converting each
additive primitive to a quantum gate – will be
highly inefficient, as it will replace each primi-
tive in an n qubit circuit with an n-controlled
gate. This would in particular cause an expo-
nential blow-up when converting a mulitplica-
tive circuit into an additive one and back.

In order to synthesise more efficiently, we
need to find maps of the additive wires onto
the computational basis that simplify the quan-
tum gates and reduce the number of controlled
qubits. Stacking wires and generators as we
proposed will also be part of the solution.
Other related work in routing strategies and
efficient reversible circuit synthesis will also be
key in obtaining efficient circuits.

In parallel, the additive computation model
should be formalised with precise categorical
syntax and semantics. We have mentioned that
the model is based on a PROP, which comes
with a formal diagrammatic reasoning that we
have used. We have also mentioned the links
to other established theories such as the ZX-
calculus [8, 9] and the graphical linear alge-
bra [127, 128]. In further work, the relations
and definitions should be made explicit. In
particular the interaction of additive and mul-
tiplicative tensor product should be formalised
in order to develop a compositional theory that
combines both approaches.

A different avenue of work would be to
study the convergence of variational optimi-
sation algorithms in the additive model ver-
sus their conventional multiplicative counter-
part. This could be another application area
of additive circuits. We made the argument in
section ii that since parameters affect the over-
all computation more locally in the additive
model, it should perform better in variational
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optimisation use cases. Different parametrisa-
tions and circuit templates would have to be
explored to establish whether there is indeed
an advantage in such use cases.

Additive circuit parametrisations could also
provide a starting point for unitary synthesis
in the additive model. Given that the addi-
tive circuit model is related to the graphical
linear algebra, in which it well-known how to
express matrices as diagrams [127], unitaries
might be expressible quite simply in the addi-
tive model. This could be particularly interest-
ing for instance for sparse matrices, for which
there currently exists no dedicated synthesis
methods.

Finally, the additive model provides an ex-
cellent opportunity to develop new intuitions
on quantum computing for educational and
research purposes. We ought to develop an
interactive tool that allows users novice and
experienced alike to design quantum circuits
in the additive (or the combined additive-
multiplicative) language. Such additive circuits
could then be compiled into quantum circuits
and run on simulators and actual devices.

We need scalable solutions that will allow
humans to write circuits in the thousands of
qubits, within a few years. The million dollar
question is which framework will allow us to
achieve this. We had better start looking for al-
ternatives now, as I am sceptical that the circuit
model on its own will be the solution.
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[61] S. Stojković et al. “Reversible Circuits
Synthesis from Functional Decision Dia-
grams by using Node Dependency Ma-
trices”. In: Journal of Circuits, Systems and
Computers 29.5 (2020). doi: 10.1142/
S0218126620500796.

[62] S. Banerjee et al. “Toffoli netlist based
synthesis of four variable reversible
functions”. In: ed. by Piuri V. et al.
Vol. 2017-December. Institute of Electri-
cal and Electronics Engineers Inc., 2017,
pp. 315–320. doi: 10 . 1109 / ICRCICN .
2017.8234527.

[63] S. Thakral and D. Bansal. “Improved
ant colony optimization for quantum
cost reduction”. In: Bulletin of Electri-
cal Engineering and Informatics 9.4 (2020),
pp. 1525–1532. doi: 10 . 11591 / eei .
v9i4.1657.

[64] K. Datta et al. “A cycle based reversible
logic synthesis approach”. In: 2013,
pp. 316–319. doi: 10.1109/ICACC.2013.
67.

[65] J. Jung and I.-C. Choi. “A multi-
commodity network model for optimal
quantum reversible circuit synthesis”.
In: PLoS ONE 16.6 June (2021). doi: 10.
1371/journal.pone.0253140.

[66] M. Amy et al. “A meet-in-the-middle
algorithm for fast synthesis of depth-
optimal quantum circuits”. In: IEEE
Transactions on Computer-Aided Design
of Integrated Circuits and Systems 32.6
(2013), pp. 818–830. doi: 10.1109/TCAD.
2013.2244643.

[67] Marc G. Davis et al. “Towards Optimal
Topology Aware Quantum Circuit Syn-
thesis”. In: 2020 IEEE International Con-
ference on Quantum Computing and En-
gineering (QCE). Oct. 2020, pp. 223–234.
doi: 10.1109/QCE49297.2020.00036.

[68] Ethan Smith et al. LEAP: Scaling Numeri-
cal Optimization Based Synthesis Using an
Incremental Approach. arXiv: 2106.11246
[quant-ph].

[69] Vlad Gheorghiu, Michele Mosca, and
Priyanka Mukhopadhyay. A quasi-
polynomial time heuristic algorithm for syn-
thesizing T-depth optimal circuits. arXiv:
2101.03142 [quant-ph].

[70] A. Daskin and S. Kais. “Decomposition
of unitary matrices for finding quan-
tum circuits: Application to molecular
Hamiltonians”. In: Journal of Chemical
Physics 134.14 (2011). doi: 10.1063/1.
3575402.

[71] E.A. Martinez et al. “Compiling quan-
tum algorithms for architectures with
multi-qubit gates”. In: New Journal of
Physics 18.6 (2016). doi: 10.1088/1367-
2630/18/6/063029.

[72] Liam Madden and Andrea Simon-
etto. Best Approximate Quantum Com-
piling Problems. arXiv: 2106 . 05649
[quant-ph].

22

https://doi.org/10.1109/ICECS.2014.7050049
https://doi.org/10.1109/ICECS.2014.7050049
https://doi.org/10.1109/ISMVL.2016.54
https://doi.org/10.1109/ISMVL.2016.54
https://doi.org/10.1016/j.entcs.2010.02.006
https://doi.org/10.1016/j.entcs.2010.02.006
https://doi.org/10.1109/ICCD.2011.6081399
https://doi.org/10.1109/ICCD.2011.6081399
https://doi.org/10.1142/S0218126620500796
https://doi.org/10.1142/S0218126620500796
https://doi.org/10.1109/ICRCICN.2017.8234527
https://doi.org/10.1109/ICRCICN.2017.8234527
https://doi.org/10.11591/eei.v9i4.1657
https://doi.org/10.11591/eei.v9i4.1657
https://doi.org/10.1109/ICACC.2013.67
https://doi.org/10.1109/ICACC.2013.67
https://doi.org/10.1371/journal.pone.0253140
https://doi.org/10.1371/journal.pone.0253140
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/QCE49297.2020.00036
https://arxiv.org/abs/2106.11246
https://arxiv.org/abs/2106.11246
https://arxiv.org/abs/2101.03142
https://doi.org/10.1063/1.3575402
https://doi.org/10.1063/1.3575402
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1088/1367-2630/18/6/063029
https://arxiv.org/abs/2106.05649
https://arxiv.org/abs/2106.05649


Quantum circuits in additive Hilbert space r Term Paper Hilary 2021

[73] Xin-Chuan Wu et al. QGo: Scalable
Quantum Circuit Optimization Using Au-
tomated Synthesis. arXiv: 2012 . 09835
[quant-ph].

[74] T. Loke, J. B. Wang, and Y. H. Chen.
“OptQC: An optimized parallel quan-
tum compiler”. In: 185.12 (Dec. 2014),
3307–3316. doi: 10.1016/j.cpc.2014.
07.022.

[75] SS Bullock and IL Markov. “An arbi-
trary two-qubit computation in 23 ele-
mentary gates or less”. In: 40th Design
Autoation Conference, Proceedings 2003.
Design Automation Conference DAC.
Assoc Computing Machinery, 2003, 324–
329.

[76] M. Möttönen et al. “Quantum cir-
cuits for general multiqubit gates”.
In: Physical Review Letters 93.13 (2004),
pp. 130502-1-130502–4. doi: 10.1103/
PhysRevLett.93.130502.

[77] M. Saeedi et al. “Block-based quantum-
logic synthesis”. In: Quantum Infor-
mation and Computation 11.3-4 (2011),
pp. 262–277.

[78] Raban Iten et al. Introduction to Uni-
versalQCompiler. arXiv: 1904 . 01072
[quant-ph].

[79] A. M. Krol et al. Efficient decomposition
of unitary matrices in quantum circuit com-
pilers. arXiv: 2101.02993 [quant-ph].

[80] M. Sedlák and M. Plesch. “Towards op-
timization of quantum circuits”. In: Cen-
tral European Journal of Physics 6.1 (2008),
pp. 128–134. doi: 10.2478/s11534-008-
0039-8.

[81] Xiaoming Sun et al. Asymptotically Op-
timal Circuit Depth for Quantum State
Preparation and General Unitary Synthesis.
arXiv: 2108.06150 [quant-ph].

[82] Yihui Quek and Patrick Rebentrost. Fast
algorithm for quantum polar decomposi-
tion, pretty-good measurements, and the
Procrustes problem. arXiv: 2106.07634
[quant-ph].

[83] V.V. Shende, I.L. Markov, and S.S. Bul-
lock. “Smaller two-qubit circuits for
quantum communication and compu-
tation”. In: ed. by Figueras J. Gielen G.
Vol. 2. 2004, pp. 980–985. doi: 10.1109/
DATE.2004.1269020.

[84] D. Maslov et al. “Quantum circuit sim-
plification using templates”. In: Design,
Automation and Test in Europe. Mar. 2005,
1208–1213 Vol. 2. doi: 10.1109/DATE.
2005.249.

[85] D. Maslov et al. “Quantum circuit sim-
plification and level compaction”. In:
IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems
27.3 (2008), pp. 436–444. doi: 10.1109/
TCAD.2007.911334.

[86] H.R. Bhagyalakshmi and M.K. Venkate-
sha. “Toffoli cascade synthesis of an op-
timized two-bit comparator”. In: Lecture
Notes in Electrical Engineering 248 LNEE
(2014), pp. 779–787. doi: 10.1007/978-
81-322-1157-0_79.

[87] A. Banerjee, A. Pathak, and G.W. Dueck.
“Minimal designs of reversible sequen-
tial elements”. In: Lecture Notes in Com-
puter Science (including subseries Lecture
Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 8507 LNCS
(2014), pp. 137–148. doi: 10.1007/978-
3-319-08494-7_11.

[88] H. V. Jayashree and V. K. Agrawal. “De-
sign of Ancilla Invariant and Quantum
Cost efficient reversible arithmetic com-
ponents”. In: 2017 International Confer-
ence on Innovations in Electronics, Sig-
nal Processing and Communication (IESC).
Apr. 2017, pp. 22–27. doi: 10 . 1109 /
IESPC.2017.8071858.

[89] A. Chaudhuri et al. “A novel reversible
two’s complement gate (TCG) and its
quantum mapping”. In: ed. by Sarkar A.
Nandi S. Institute of Electrical and Elec-
tronics Engineers Inc., 2017, pp. 252–256.
doi: 10.1109/DEVIC.2017.8073946.

23

https://arxiv.org/abs/2012.09835
https://arxiv.org/abs/2012.09835
https://doi.org/10.1016/j.cpc.2014.07.022
https://doi.org/10.1016/j.cpc.2014.07.022
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.93.130502
https://arxiv.org/abs/1904.01072
https://arxiv.org/abs/1904.01072
https://arxiv.org/abs/2101.02993
https://doi.org/10.2478/s11534-008-0039-8
https://doi.org/10.2478/s11534-008-0039-8
https://arxiv.org/abs/2108.06150
https://arxiv.org/abs/2106.07634
https://arxiv.org/abs/2106.07634
https://doi.org/10.1109/DATE.2004.1269020
https://doi.org/10.1109/DATE.2004.1269020
https://doi.org/10.1109/DATE.2005.249
https://doi.org/10.1109/DATE.2005.249
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1007/978-81-322-1157-0_79
https://doi.org/10.1007/978-81-322-1157-0_79
https://doi.org/10.1007/978-3-319-08494-7_11
https://doi.org/10.1007/978-3-319-08494-7_11
https://doi.org/10.1109/IESPC.2017.8071858
https://doi.org/10.1109/IESPC.2017.8071858
https://doi.org/10.1109/DEVIC.2017.8073946


Quantum circuits in additive Hilbert space r Term Paper Hilary 2021

[90] A. Shafaei, M. Saeedi, and M. Pedram.
“Reversible Logic synthesis of K-input,
M-output lookup tables”. In: Institute
of Electrical and Electronics Engineers
Inc., 2013, pp. 1235–1240. doi: 10.7873/
date.2013.256.

[91] Katherine L. Brown et al. “Reducing the
number of ancilla qubits and the gate
count required for creating large con-
trolled operations”. In: 14.3 (Mar. 2015),
891–899. doi: 10.1007/s11128- 014-
0900-1.

[92] P. Niemann, A. Gupta, and R. Drech-
sler. “T-depth Optimization for
Fault-Tolerant Quantum Circuits”.
In: vol. 2019-May. IEEE Computer
Society, 2019, pp. 108–113. doi:
10.1109/ISMVL.2019.00027.

[93] Yongshan Ding et al. “SQUARE: Strate-
gic Quantum Ancilla Reuse for Modular
Quantum Programs via Cost-Effective
Uncomputation”. In: 2020 ACM/IEEE
47th Annual International Symposium on
Computer Architecture (ISCA 2020). IEEE
Computer Soc, 2020, 570–583. doi: 10.
1109/ISCA45697.2020.00054.

[94] A. Abdollahi and M. Pedram. “Analy-
sis and synthesis of quantum circuits by
using quantum decision diagrams”. In:
vol. 1. Institute of Electrical and Elec-
tronics Engineers Inc., 2006. doi: 10 .
1109/date.2006.244176.

[95] A. Cowtan et al. “Phase gadget synthe-
sis for shallow circuits”. In: ed. by Leifer
M. Coecke B. Vol. 318. Open Publish-
ing Association, 2020, pp. 213–228. doi:
10.4204/EPTCS.318.13.

[96] J.-H. Bae et al. “Quantum circuit op-
timization using quantum Karnaugh
map”. In: Scientific Reports 10.1 (2020).
doi: 10.1038/s41598-020-72469-7.

[97] Reza Haghshenas. “Optimization
schemes for unitary tensor-network
circuit”. In: 3.2 (May 2021). doi:
10.1103/PhysRevResearch.3.023148.

[98] G. Meuli, M. Soeken, and G. De Micheli.
“SAT-based CNOT, T quantum circuit
synthesis”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11106 LNCS (2018). Ed.
by Kari J. Ulidowski I., pp. 175–188. doi:
10.1007/978-3-319-99498-7_12.

[99] M. Houshmand et al. “Quantum circuit
synthesis targeting to improve one-way
quantum computation pattern cost met-
rics”. In: ACM Journal on Emerging Tech-
nologies in Computing Systems 13.4 (2017).
doi: 10.1145/3064834.

[100] P. Mercy Nesa Rani et al. “Im-
proved Decomposition of Multiple-
Control Ternary Toffoli Gates Us-
ing Muthukrishnan-Stroud Quantum
Gates”. In: Reversible Computation RC
2017. Ed. by Phillips, I and Rahaman, H.
Vol. 10301. Lecture Notes in Computer
Science. Springer International Publish-
ing AG, 2017, 202–213. doi: 10.1007/
978-3-319-59936-6\_16.

[101] Amit Saha et al. Asymptotically Improved
Grover’s Algorithm in any Dimensional
Quantum System with Novel Decomposed
n-qudit Toffoli Gate. arXiv: 2012.04447
[quant-ph].

[102] Earl T. Campbell and Mark Howard.
“Unified framework for magic state dis-
tillation and multiqubit gate synthesis
with reduced resource cost”. In: Physical
Review A 95.2 (Feb. 2017). doi: 10.1103/
physreva.95.022316.

[103] Vadym Kliuchnikov, Dmitri Maslov,
and Michele Mosca. “Practical Approx-
imation of Single-Qubit Unitaries by
Single-Qubit Quantum Clifford and T
Circuits”. In: 65.1 (Jan. 2016), pp. 161–
172. doi: 10.1109/TC.2015.2409842.

[104] Gary J. Mooney, Charles D. Hill, and
Lloyd C. L. Hollenberg. “Cost-optimal
single-qubit gate synthesis in the Clif-
ford hierarchy”. In: Quantum 5 (Feb.
2021), p. 396. doi: 10.22331/q-2021-
02-15-396.

24

https://doi.org/10.7873/date.2013.256
https://doi.org/10.7873/date.2013.256
https://doi.org/10.1007/s11128-014-0900-1
https://doi.org/10.1007/s11128-014-0900-1
https://doi.org/10.1109/ISMVL.2019.00027
https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1109/date.2006.244176
https://doi.org/10.1109/date.2006.244176
https://doi.org/10.4204/EPTCS.318.13
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1103/PhysRevResearch.3.023148
https://doi.org/10.1007/978-3-319-99498-7_12
https://doi.org/10.1145/3064834
https://doi.org/10.1007/978-3-319-59936-6\_16
https://doi.org/10.1007/978-3-319-59936-6\_16
https://arxiv.org/abs/2012.04447
https://arxiv.org/abs/2012.04447
https://doi.org/10.1103/physreva.95.022316
https://doi.org/10.1103/physreva.95.022316
https://doi.org/10.1109/TC.2015.2409842
https://doi.org/10.22331/q-2021-02-15-396
https://doi.org/10.22331/q-2021-02-15-396


Quantum circuits in additive Hilbert space r Term Paper Hilary 2021

[105] M. Zomorodi-Moghadam, M.-A.
Taherkhani, and K. Navi. “Synthesis
and optimization by quantum circuit
description language”. In: Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioin-
formatics) 8911 (2014), pp. 74–91. doi:
10.1007/978-3-662-45711-5_5.

[106] Mehdi Saeedi and Igor L. Markov. “Syn-
thesis and Optimization of Reversible
Circuits-A Survey”. In: 45.2 (Feb. 2013).
doi: 10.1145/2431211.2431220.

[107] Adriano Barenco et al. “Elementary
gates for quantum computation”. In:
Physical Review A 52.5 (Nov. 1995),
pp. 3457–3467. doi: 10.1103/physreva.
52.3457.

[108] Vivek V. Shende and Igor L. Markov. On
the CNOT-cost of TOFFOLI gates. 2008.
arXiv: 0803.2316 [quant-ph].

[109] Dmitri Maslov. “Advantages of using
relative-phase Toffoli gates with an ap-
plication to multiple control Toffoli
optimization”. In: Physical Review A -
Atomic, Molecular, and Optical Physics
93.2, 022311 (Feb. 2016), p. 022311. doi:
10.1103/PhysRevA.93.022311.

[110] Jonathan M. Baker et al. Decomposing
Quantum Generalized Toffoli with an Ar-
bitrary Number of Ancilla. 2019. arXiv:
1904.01671 [quant-ph].

[111] Philipp Niemann, Anshu Gupta, and
Rolf Drechsler. “T-depth Optimization
for Fault-Tolerant Quantum Circuits”.
In: 2019 IEEE 49th International Sympo-
sium on Multiple-valued Logic (ISMVL).
IEEE, 2019, 108–113. doi: 10 . 1109 /
ISMVL.2019.00027.

[112] Aleks Kissinger and Arianne Meijer-
van de Griend. CNOT circuit extrac-
tion for topologically-constrained quan-
tum memories. 2019. arXiv: 1904.00633
[quant-ph].

[113] Adrián Pérez-Salinas et al. “Data re-
uploading for a universal quantum clas-
sifier”. In: Quantum 4 (Feb. 2020), p. 226.
doi: 10.22331/q-2020-02-06-226.

[114] Maria Schuld, Ryan Sweke, and Jo-
hannes Jakob Meyer. “Effect of data en-
coding on the expressive power of varia-
tional quantum-machine-learning mod-
els”. In: Phys. Rev. A 103 (Mar. 2021),
p. 032430. doi: 10.1103/PhysRevA.103.
032430.

[115] David Amaro et al. Filtering variational
quantum algorithms for combinatorial op-
timization. 2021. arXiv: 2106 . 10055
[quant-ph].

[116] Edward Farhi, Jeffrey Goldstone, and
Sam Gutmann. A Quantum Approxi-
mate Optimization Algorithm. 2014. arXiv:
1411.4028 [quant-ph].

[117] Alexander Cowtan, Will Simmons, and
Ross Duncan. A Generic Compilation
Strategy for the Unitary Coupled Clus-
ter Ansatz. 2020. arXiv: 2007 . 10515
[quant-ph].

[118] Petar Jurcevic et al. “Demonstration of
quantum volume 64 on a superconduct-
ing quantum computing system”. In:
Quantum Science and Technology 6.2 (Mar.
2021), p. 025020. doi: 10.1088/2058-
9565/abe519.

[119] J. M. Pino et al. “Demonstration of
the trapped-ion quantum CCD com-
puter architecture”. In: Nature 592.7853
(Apr. 2021), pp. 209–213. doi: 10.1038/
s41586-021-03318-4.

[120] J. M. Arrazola et al. “Quantum circuits
with many photons on a programmable
nanophotonic chip”. In: Nature 591.7848
(Mar. 2021), pp. 54–60. doi: 10.1038/
s41586-021-03202-1.

[121] Frank Arute et al. “Quantum
supremacy using a programmable
superconducting processor”. In: Nature
574.7779 (Oct. 2019), pp. 505–510. doi:
10.1038/s41586-019-1666-5.

25

https://doi.org/10.1007/978-3-662-45711-5_5
https://doi.org/10.1145/2431211.2431220
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
https://arxiv.org/abs/0803.2316
https://doi.org/10.1103/PhysRevA.93.022311
https://arxiv.org/abs/1904.01671
https://doi.org/10.1109/ISMVL.2019.00027
https://doi.org/10.1109/ISMVL.2019.00027
https://arxiv.org/abs/1904.00633
https://arxiv.org/abs/1904.00633
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://arxiv.org/abs/2106.10055
https://arxiv.org/abs/2106.10055
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2007.10515
https://arxiv.org/abs/2007.10515
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1038/s41586-019-1666-5


Quantum circuits in additive Hilbert space r Term Paper Hilary 2021

[122] S. Debnath et al. “Demonstration of
a small programmable quantum com-
puter with atomic qubits”. In: Nature
536.7614 (Aug. 2016), pp. 63–66. doi:
10.1038/nature18648.

[123] C. Figgatt et al. “Parallel entangling op-
erations on a universal ion-trap quan-
tum computer”. In: Nature 572.7769
(July 2019), pp. 368–372. doi: 10.1038/
s41586-019-1427-5.

[124] Nikodem Grzesiak et al. “Efficient arbi-
trary simultaneously entangling gates
on a trapped-ion quantum computer”.
In: Nature Communications 11.1 (June
2020). doi: 10 . 1038 / s41467 - 020 -
16790-9.

[125] John C. Baez, Brandon Coya, and Fran-
ciscus Rebro. “Props in Network The-
ory”. In: (July 2017). arXiv: 1707.08321
[math.CT].

[126] Yves Lafont. “Towards an algebraic the-
ory of Boolean circuits”. In: Journal of
Pure and Applied Algebra 184.2-3 (Nov.
2003), pp. 257–310. doi: 10 . 1016 /
s0022-4049(03)00069-0.

[127] Filippo Bonchi, Pawel Sobocinski, and
Fabio Zanasi. “Full Abstraction for Sig-
nal Flow Graphs”. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages. ACM, Jan. 2015. doi: 10 .
1145/2676726.2676993.

[128] Filippo Bonchi, Paweł Sobociński, and
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